@article{UeceylerKahnKrameretal.2013, author = {{\"U}{\c{c}}eyler, Nurcan and Kahn, Ann-Kathrin and Kramer, Daniela and Zeller, Daniel and Casanova-Molla, Jordi and Wanner, Christoph and Weidemann, Frank and Katsarava, Zaza and Sommer, Claudia}, title = {Impaired small fiber conduction in patients with Fabry disease: a neurophysiological case-control study}, series = {BMC Neurology}, journal = {BMC Neurology}, doi = {10.1186/1471-2377-13-47}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96527}, year = {2013}, abstract = {Background Fabry disease is an inborn lysosomal storage disorder which is associated with small fiber neuropathy. We set out to investigate small fiber conduction in Fabry patients using pain-related evoked potentials (PREP). Methods In this case-control study we prospectively studied 76 consecutive Fabry patients for electrical small fiber conduction in correlation with small fiber function and morphology. Data were compared with healthy controls using non-parametric statistical tests. All patients underwent neurological examination and were investigated with pain and depression questionnaires. Small fiber function (quantitative sensory testing, QST), morphology (skin punch biopsy), and electrical conduction (PREP) were assessed and correlated. Patients were stratified for gender and disease severity as reflected by renal function. Results All Fabry patients (31 men, 45 women) had small fiber neuropathy. Men with Fabry disease showed impaired cold (p < 0.01) and warm perception (p < 0.05), while women did not differ from controls. Intraepidermal nerve fiber density (IENFD) was reduced at the lower leg (p < 0.001) and the back (p < 0.05) mainly of men with impaired renal function. When investigating A-delta fiber conduction with PREP, men but not women with Fabry disease had lower amplitudes upon stimulation at face (p < 0.01), hands (p < 0.05), and feet (p < 0.01) compared to controls. PREP amplitudes further decreased with advance in disease severity. PREP amplitudes and warm (p < 0.05) and cold detection thresholds (p < 0.01) at the feet correlated positively in male patients. Conclusion Small fiber conduction is impaired in men with Fabry disease and worsens with advanced disease severity. PREP are well-suited to measure A-delta fiber conduction.}, language = {en} } @article{WeidemannSanchezNinoPoliteietal.2013, author = {Weidemann, Frank and Sanchez-Nino, Maria D. and Politei, Juan and Oliveira, Jo{\~a}o-Paulo and Wanner, Christoph and Warnock, David G. and Oritz, Alberto}, title = {Fibrosis: a key feature of Fabry disease with potential therapeutic implications}, series = {Orphanet Journal of Rare Diseases}, volume = {8}, journal = {Orphanet Journal of Rare Diseases}, number = {116}, issn = {1750-1172}, doi = {10.1186/1750-1172-8-116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124773}, year = {2013}, abstract = {Fabry disease is a rare X-linked hereditary disease caused by mutations in the AGAL gene encoding the lysosomal enzyme alpha-galactosidase A. Enzyme replacement therapy (ERT) is the current cornerstone of Fabry disease management. Involvement of kidney, heart and the central nervous system shortens life span, and fibrosis of these organs is a hallmark of the disease. Fibrosis was initially thought to result from tissue ischemia secondary to endothelial accumulation of glycosphingolipids in the microvasculature. However, despite ready clearance of endothelial deposits, ERT is less effective in patients who have already developed fibrosis. Several potential explanations of this clinical observation may impact on the future management of Fabry disease. Alternative molecular pathways linking glycosphingolipids and fibrosis may be operative; tissue injury may recruit secondary molecular mediators of fibrosis that are unresponsive to ERT, or fibrosis may represent irreversible tissue injury that limits the therapeutic response to ERT. We provide an overview of Fabry disease, with a focus on the assessment of fibrosis, the clinical consequences of fibrosis, and recent advances in understanding the cellular and molecular mechanisms of fibrosis that may suggest novel therapeutic approaches to Fabry disease.}, language = {en} } @article{LiuHuNiemannetal.2013, author = {Liu, Dan and Hu, Kai and Niemann, Markus and Herrmann, Sebastian and Cikes, Maja and St{\"o}rk, Stefan and Beer, Meinrad and Gaudron, Philipp Daniel and Morbach, Caroline and Knop, Stefan and Geissinger, Eva and Ertl, Georg and Bijnens, Bart and Weidemann, Frank}, title = {Impact of Regional Left Ventricular Function on Outcome for Patients with AL Amyloidosis}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0056923}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130293}, pages = {e56923}, year = {2013}, abstract = {Objectives The aim of this study was to explore the left ventricular (LV) deformation changes and the potential impact of deformation on outcome in patients with proven light-chain (AL) amyloidosis and LV hypertrophy. Background Cardiac involvement in AL amyloidosis patients is associated with poor outcome. Detecting regional cardiac function by advanced non-invasive techniques might be favorable for predicting outcome. Methods LV longitudinal, circumferential and radial peak systolic strains (Ssys) were assessed by speckle tracking imaging (STI) in 44 biopsy-proven systemic AL amyloidosis patients with LV hypertrophy (CA) and in 30 normal controls. Patients were divided into compensated (n = 18) and decompensated (n = 26) group based on clinical assessment and followed-up for a median period of 345 days. Results Ejection fraction (EF) was preserved while longitudinal Ssys (LSsys) was significantly reduced in both compensated and decompensated groups. Survival was significantly reduced in decompensated group (35\% vs. compensated 78\%, P = 0.001). LSsys were similar in apical segments and significantly reduced in basal segments between two patient groups. LSsys at mid-segments were significantly reduced in all LV walls of decompensated group. Patients were further divided into 4 subgroups according to the presence or absence of reduced LSsys in no (normal), only basal (mild), basal and mid (intermediate) and all segments of the septum (severe). This staging revealed continuously worse prognosis in proportion to increasing number of segments with reduced LSsys (mortality: normal 14\%, mild 27\%, intermediate 67\%, and severe 64\%). Mid-septum LSsys<11\% suggested a 4.8-fold mortality risk than mid-septum LSsys≥11\%. Multivariate regression analysis showed NYHA class and mid-septum LSsys were independent predictors for survival. Conclusions Reduced deformation at mid-septum is associated with worse prognosis in systemic amyloidosis patients with LV hypertrophy.}, language = {en} } @article{GassenmaierGorskiAleksicetal.2013, author = {Gassenmaier, Tobias and Gorski, Armin and Aleksic, Ivan and Deubner, Nikolas and Weidemann, Frank and Beer, Meinrad}, title = {Impact of cardiac magnet resonance imaging on management of ventricular septal rupture after acute myocardial infarction}, series = {World Journal of Cardiology}, journal = {World Journal of Cardiology}, doi = {10.4330/wjc.v5.i5.151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96562}, year = {2013}, abstract = {A 74-year-old man was admitted to the cardiac catheterization laboratory with acute myocardial infarction. After successful angioplasty and stent implantation into the right coronary artery, he developed cardiogenic shock the following day. Echocardiography showed ventricular septal rupture. Cardiac magnet resonance imaging (MRI) was performed on the critically ill patient and provided detailed information on size and localization of the ruptured septum by the use of fast MRI sequences. Moreover, the MRI revealed that the ventricular septal rupture was within the myocardial infarction area, which was substantially larger than the rupture. As the patient's condition worsened, he was intubated and had intra-aortic balloon pump implanted, and extracorporeal membrane oxygenation was initiated. During the following days, the patient's situation improved, and surgical correction of the ventricular septal defect could successfully be performed. To the best of our knowledge, this case report is the first description of postinfarction ventricular septal rupture by the use of cardiac MRI in an intensive care patient with cardiogenic shock and subsequent successful surgical repair.}, language = {en} }