@article{VainshteinSanchezBrazmaetal.2010, author = {Vainshtein, Yevhen and Sanchez, Mayka and Brazma, Alvis and Hentze, Matthias W. and Dandekar, Thomas and Muckenthaler, Martina U.}, title = {The IronChip evaluation package: a package of perl modules for robust analysis of custom microarrays}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67869}, year = {2010}, abstract = {Background: Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available. Results: The IronChip Evaluation Package (ICEP) is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls. Conclusions: ICEP is a stand-alone Windows application to obtain optimal data quality from custom-designed microarrays and is freely available here (see "Additional Files" section) and at: http://www.alice-dsl.net/evgeniy. vainshtein/ICEP/}, subject = {Microarray}, language = {en} } @article{ArgosDandekar1994, author = {Argos, P. and Dandekar, Thomas}, title = {Delineating the main chain topology of four-helix bundle proteins using the genetic algorithm and knowledge based on the amino acid sequence alone}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33807}, year = {1994}, abstract = {No abstract available}, subject = {Proteine}, language = {en} } @misc{Dandekar1991, author = {Dandekar, Thomas}, title = {Olbers' Paradox (peer-reviewed scientific correspondence)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31672}, year = {1991}, abstract = {No abstract available}, language = {en} } @unpublished{Dandekar2008, author = {Dandekar, Thomas}, title = {Why are nature´s constants so fine-tuned? The case for an escalating complex universe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34488}, year = {2008}, abstract = {Why is our universe so fine-tuned? In this preprint we discuss that this is not a strange accident but that fine-tuned universes can be considered to be exceedingly large if one counts the number of observable different states (i.e. one aspect of the more general preprint http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3353/). Looking at parameter variation for the same set of physical laws simple and complex processes (including life) and worlds in a multiverse are compared in simple examples. Next the anthropocentric principle is extended as many conditions which are generally interpreted anthropocentric only ensure a large space of different system states. In particular, the observed over-tuning beyond the level for our existence is explainable by these system considerations. More formally, the state space for different systems becomes measurable and comparable looking at their output behaviour. We show that highly interacting processes are more complex then Chaitin complexity, the latter denotes processes not compressible by shorter descriptions (Kolomogorov complexity). The complexity considerations help to better study and compare different processes (programs, living cells, environments and worlds) including dynamic behaviour and can be used for model selection in theoretical physics. Moreover, the large size (in terms of different states) of a world allowing complex processes including life can in a model calculation be determined applying discrete histories from quantum spin-loop theory. Nevertheless there remains a lot to be done - hopefully the preprint stimulates further efforts in this area.}, subject = {Natur}, language = {en} } @unpublished{Dandekar2007, author = {Dandekar, Thomas}, title = {Some general system properties of a living observer and the environment he explores}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33537}, year = {2007}, abstract = {In a nice assay published in Nature in 1993 the physicist Richard God III started from a human observer and made a number of witty conclusions about our future prospects giving estimates for the existence of the Berlin Wall, the human race and all the rest of the universe. In the same spirit, we derive implications for "the meaning of life, the universe and all the rest" from few principles. Adams´ absurd answer "42" tells the lesson "garbage in / garbage out" - or suggests that the question is non calculable. We show that experience of "meaning" and to decide fundamental questions which can not be decided by formal systems imply central properties of life: Ever higher levels of internal representation of the world and an escalating tendency to become more complex. An observer, "collecting observations" and three measures for complexity are examined. A theory on living systems is derived focussing on their internal representation of information. Living systems are more complex than Kolmogorov complexity ("life is NOT simple") and overcome decision limits (G{\"o}del theorem) for formal systems as illustrated for cell cycle. Only a world with very fine tuned environments allows life. Such a world is itself rather complex and hence excessive large in its space of different states - a living observer has thus a high probability to reside in a complex and fine tuned universe.}, subject = {Komplex }, language = {en} } @misc{DandekarArgos1993, author = {Dandekar, Thomas and Argos, P.}, title = {Drug assay using antibody mimics made by molecular imprinting}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30003}, year = {1993}, abstract = {No abstract available}, language = {en} } @article{DandekarStripeckeGrayetal.1991, author = {Dandekar, Thomas and Stripecke, Renata and Gray, Nicola K. and Goossen, Britta and Constable, Anne and Johansson, Hans E. and Hentze, Matthias W.}, title = {Identification of a novel iron-responsive element in murine and human erythroid \(\delta\)-aminolevulinic acid synthase mRNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29929}, year = {1991}, abstract = {No abstract available}, language = {en} } @inproceedings{DandekarArgos1993, author = {Dandekar, Thomas and Argos, P.}, title = {Genetic algorithms as a new tool to study protein stability}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29990}, year = {1993}, abstract = {No abstract available}, language = {en} } @article{DandekarTollervey1992, author = {Dandekar, Thomas and Tollervey, David}, title = {Mutational analysis of Schizosaccharomyces pombe U4 snRNA by plasmid exchange}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29969}, year = {1992}, abstract = {No abstract available}, language = {en} } @misc{DandekarArgos1992, author = {Dandekar, Thomas and Argos, Patrick}, title = {A novel heterodimeric cysteine protease is required for interleukin 1ß processing in monocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29986}, year = {1992}, abstract = {No abstract available}, language = {en} }