@techreport{RossiMaurelliUnnithanetal.2021, author = {Rossi, Angelo Pio and Maurelli, Francesco and Unnithan, Vikram and Dreger, Hendrik and Mathewos, Kedus and Pradhan, Nayan and Corbeanu, Dan-Andrei and Pozzobon, Riccardo and Massironi, Matteo and Ferrari, Sabrina and Pernechele, Claudia and Paoletti, Lorenzo and Simioni, Emanuele and Maurizio, Pajola and Santagata, Tommaso and Borrmann, Dorit and N{\"u}chter, Andreas and Bredenbeck, Anton and Zevering, Jasper and Arzberger, Fabian and Reyes Mantilla, Camilo Andr{\´e}s}, title = {DAEDALUS - Descent And Exploration in Deep Autonomy of Lava Underground Structures}, isbn = {978-3-945459-33-1}, issn = {1868-7466}, doi = {10.25972/OPUS-22791}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227911}, pages = {188}, year = {2021}, abstract = {The DAEDALUS mission concept aims at exploring and characterising the entrance and initial part of Lunar lava tubes within a compact, tightly integrated spherical robotic device, with a complementary payload set and autonomous capabilities. The mission concept addresses specifically the identification and characterisation of potential resources for future ESA exploration, the local environment of the subsurface and its geologic and compositional structure. A sphere is ideally suited to protect sensors and scientific equipment in rough, uneven environments. It will house laser scanners, cameras and ancillary payloads. The sphere will be lowered into the skylight and will explore the entrance shaft, associated caverns and conduits. Lidar (light detection and ranging) systems produce 3D models with high spatial accuracy independent of lighting conditions and visible features. Hence this will be the primary exploration toolset within the sphere. The additional payload that can be accommodated in the robotic sphere consists of camera systems with panoramic lenses and scanners such as multi-wavelength or single-photon scanners. A moving mass will trigger movements. The tether for lowering the sphere will be used for data communication and powering the equipment during the descending phase. Furthermore, the connector tether-sphere will host a WIFI access point, such that data of the conduit can be transferred to the surface relay station. During the exploration phase, the robot will be disconnected from the cable, and will use wireless communication. Emergency autonomy software will ensure that in case of loss of communication, the robot will continue the nominal mission.}, subject = {Mond}, language = {en} } @phdthesis{Peters2021, author = {Peters, Simon}, title = {The impact of sphingolipids on \(Neisseria\) \(meningitidis\) and their role in meningococcal pathogenicity}, doi = {10.25972/OPUS-22623}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226233}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The obligate human pathogen Neisseria meningitidis is a major cause of sepsis and meningitis worldwide. It affects mainly toddlers and infants and is responsible for thousands of deaths each year. In this study, different aspects of the importance of sphingolipids in meningococcal pathogenicity were investigated. In a first step, the acid sphingomyelinase (ASM), which degrades membrane sphingomyelin to ceramide, was studied in the context of meningococcal infection. A requirement for ASM surface activity is its translocation from the lysosomal compartment to the cell surface, a process that is currently poorly understood. This study used various approaches, including classical invasion and adherence assays, flow cytometry, and classical and super resolution immunofluorescence microscopy (dSTORM). The results showed that the live, highly piliated N. meningitidis strain 8013/12 induced calcium-dependent ASM translocation in human brain microvascular endothelial cells (HBMEC). Furthermore, it promoted the formation of ceramide-rich platforms (CRPs). In addition, ASM translocation and CRP formation were observed after treating the cells with pili-enriched fractions derived from the same strain. The importance for N. meningitidis to utilize this pathway was shown by the inhibition of the calcium-dependent ASM translocation, which greatly decreased the number of invasive bacteria. I also investigated the importance of the glycosphingolipids GM1 and Gb3. The results showed that GM1, but not Gb3, plays an important role in the ability of N. meningitidis to invade HBMEC. By combining dSTORM imaging and microbiological approaches, we demonstrated that GM1 accumulated prolifically around bacteria during the infection, and that this interaction seemed essential for meningococcal invasion. Sphingolipids are not only known for their beneficial effect on pathogens. Sphingoid bases, including sphingosine, are known for their antimicrobial activity. In the last part of this study, a novel correlative light and electron microscopy approach was established in the combination with click chemistry to precisely localize azido-functionalized sphingolipids in N. meningitidis. The result showed a distinct concentration-dependent localization in either the outer membrane (low concentration) or accumulated in the cytosol (high concentration). This pattern was confirmed by mass spectrometry on separated membrane fractions. Our data provide a first insight into the underlying mechanism of antimicrobial sphingolipids.}, subject = {Neisseria meningitidis}, language = {en} } @phdthesis{Klitsch2021, author = {Klitsch, Alexander}, title = {Corneal and cutaneous factors contributing to small fiber pathology in fibromyalgia syndrome}, doi = {10.25972/OPUS-22439}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224398}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {We examined 143 patients suffering from FMS, a syndrome characterized by chronic widespread pain, sleep disturbances, and fatigue. Etiology and pathophysiology of FMS are scarcely understood. In recent years abnormalities of small Aδ- and C-nerve fibers have been found in subgroups of FMS patients. It is yet unclear how such SFP is caused in FMS patients and how it contributes to FMS symptoms. We used CCM to analyze corneal small nerve fibers and associated LC, comparing FMS patients' results to those from 65 healthy controls and 41 disease controls suffering from SFN. We, further, assessed expression levels of mRNA and miRNA in keratinocytes taken from skin punch biopsies of FMS patients and healthy controls kept as monocellular cell cultures. A screening was performed using NGS in a small cohort of 12 FMS patients and 5 healthy controls. Results were validated in larger cohorts by qRT-PCR. As in previous studies IENFD and CNFD were reduced in a subgroup of FMS patients. We found identical LC densities in FMS patients, healthy controls, and SFN patients. The subpopulation of dLCfiber contact in FMS and SFN patients was lower than in healthy controls. Our RNA expression analysis revealed one mRNA that was expressed higher in FMS patients than in controls: PRSS21. We conclude that reduced neurotrophic signaling of LC may contribute to SFP in the cornea. Epidermal PRSS21 expression and dLCfiber contact density are promising biomarker candidates for FMS diagnosis.}, subject = {Fibromyalgie}, language = {en} } @phdthesis{Ifflaender2021, author = {Iffl{\"a}nder, Lukas}, title = {Attack-aware Security Function Management}, doi = {10.25972/OPUS-22421}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224211}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Over the last decades, cybersecurity has become an increasingly important issue. Between 2019 and 2011 alone, the losses from cyberattacks in the United States grew by 6217\%. At the same time, attacks became not only more intensive but also more and more versatile and diverse. Cybersecurity has become everyone's concern. Today, service providers require sophisticated and extensive security infrastructures comprising many security functions dedicated to various cyberattacks. Still, attacks become more violent to a level where infrastructures can no longer keep up. Simply scaling up is no longer sufficient. To address this challenge, in a whitepaper, the Cloud Security Alliance (CSA) proposed multiple work packages for security infrastructure, leveraging the possibilities of Software-defined Networking (SDN) and Network Function Virtualization (NFV). Security functions require a more sophisticated modeling approach than regular network functions. Notably, the property to drop packets deemed malicious has a significant impact on Security Service Function Chains (SSFCs)—service chains consisting of multiple security functions to protect against multiple at- tack vectors. Under attack, the order of these chains influences the end-to-end system performance depending on the attack type. Unfortunately, it is hard to predict the attack composition at system design time. Thus, we make a case for dynamic attack-aware SSFC reordering. Also, we tackle the issues of the lack of integration between security functions and the surrounding network infrastructure, the insufficient use of short term CPU frequency boosting, and the lack of Intrusion Detection and Prevention Systems (IDPS) against database ransomware attacks. Current works focus on characterizing the performance of security functions and their behavior under overload without considering the surrounding infrastructure. Other works aim at replacing security functions using network infrastructure features but do not consider integrating security functions within the network. Further publications deal with using SDN for security or how to deal with new vulnerabilities introduced through SDN. However, they do not take security function performance into account. NFV is a popular field for research dealing with frameworks, benchmarking methods, the combination with SDN, and implementing security functions as Virtualized Network Functions (VNFs). Research in this area brought forth the concept of Service Function Chains (SFCs) that chain multiple network functions after one another. Nevertheless, they still do not consider the specifics of security functions. The mentioned CSA whitepaper proposes many valuable ideas but leaves their realization open to others. This thesis presents solutions to increase the performance of single security functions using SDN, performance modeling, a framework for attack-aware SSFC reordering, a solution to make better use of CPU frequency boosting, and an IDPS against database ransomware. Specifically, the primary contributions of this work are: • We present approaches to dynamically bypass Intrusion Detection Systems (IDS) in order to increase their performance without reducing the security level. To this end, we develop and implement three SDN-based approaches (two dynamic and one static). We evaluate the proposed approaches regarding security and performance and show that they significantly increase the performance com- pared to an inline IDS without significant security deficits. We show that using software switches can further increase the performance of the dynamic approaches up to a point where they can eliminate any throughput drawbacks when using the IDS. • We design a DDoS Protection System (DPS) against TCP SYN flood at tacks in the form of a VNF that works inside an SDN-enabled network. This solution eliminates known scalability and performance drawbacks of existing solutions for this attack type. Then, we evaluate this solution showing that it correctly handles the connection establishment and present solutions for an observed issue. Next, we evaluate the performance showing that our solution increases performance up to three times. Parallelization and parameter tuning yields another 76\% performance boost. Based on these findings, we discuss optimal deployment strategies. • We introduce the idea of attack-aware SSFC reordering and explain its impact in a theoretical scenario. Then, we discuss the required information to perform this process. We validate our claim of the importance of the SSFC order by analyzing the behavior of single security functions and SSFCs. Based on the results, we conclude that there is a massive impact on the performance up to three orders of magnitude, and we find contradicting optimal orders for different workloads. Thus, we demonstrate the need for dynamic reordering. Last, we develop a model for SSFC regarding traffic composition and resource demands. We classify the traffic into multiple classes and model the effect of single security functions on the traffic and their generated resource demands as functions of the incoming network traffic. Based on our model, we propose three approaches to determine optimal orders for reordering. • We implement a framework for attack-aware SSFC reordering based on this knowledge. The framework places all security functions inside an SDN-enabled network and reorders them using SDN flows. Our evaluation shows that the framework can enforce all routes as desired. It correctly adapts to all attacks and returns to the original state after the attacks cease. We find possible security issues at the moment of reordering and present solutions to eliminate them. • Next, we design and implement an approach to load balance servers while taking into account their ability to go into a state of Central Processing Unit (CPU) frequency boost. To this end, the approach collects temperature information from available hosts and places services on the host that can attain the boosted mode the longest. We evaluate this approach and show its effectiveness. For high load scenarios, the approach increases the overall performance and the performance per watt. Even better results show up for low load workloads, where not only all performance metrics improve but also the temperatures and total power consumption decrease. • Last, we design an IDPS protecting against database ransomware attacks that comprise multiple queries to attain their goal. Our solution models these attacks using a Colored Petri Net (CPN). A proof-of-concept implementation shows that our approach is capable of detecting attacks without creating false positives for benign scenarios. Furthermore, our solution creates only a small performance impact. Our contributions can help to improve the performance of security infrastructures. We see multiple application areas from data center operators over software and hardware developers to security and performance researchers. Most of the above-listed contributions found use in several research publications. Regarding future work, we see the need to better integrate SDN-enabled security functions and SSFC reordering in data center networks. Future SSFC should discriminate between different traffic types, and security frameworks should support automatically learning models for security functions. We see the need to consider energy efficiency when regarding SSFCs and take CPU boosting technologies into account when designing performance models as well as placement, scaling, and deployment strategies. Last, for a faster adaptation against recent ransomware attacks, we propose machine-assisted learning for database IDPS signatures.}, subject = {Software-defined networking}, language = {en} } @phdthesis{Weigand2021, author = {Weigand, Isabel}, title = {Consequences of Protein Kinase A mutations in adrenocortical cells and tumours}, doi = {10.25972/OPUS-16064}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160646}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Adrenal Cushing's Syndrome (CS) is a rare but life-threatening disease and therefore it is of great importance to understand the pathogenesis leading to adrenal CS. It is well accepted that Protein Kinase A (PKA) signalling mediates steroid secretion in adrenocortical cells. PKA is an inactive heterotetramer, consisting of two catalytic and two regulatory subunits. Upon cAMP binding to the regulatory subunits, the catalytic subunits are released and are able to phosphorylate their target proteins. Recently, activating somatic mutations affecting the catalytic subunit a of PKA have been identified in a sub-population of cortisol-producing adenomas (CPAs) associated with overt CS. Interestingly, the PKA regulatory subunit IIb has long been known to have significantly lower protein levels in a sub-group of CPAs compared to other adrenocortical tumours. Yet, it is unknown, why these CPAs lack the regulatory subunit IIb, neither are any functional consequences nor are the underlying regulation mechanisms leading to reduced RIIb levels known. The results obtained in this thesis show a clear connection between Ca mutations and reduced RIIb protein levels in CPAs but not in other adrenocortical tumours. Furthermore, a specific pattern of PKA subunit expression in the different zones of the normal adrenal gland is demonstrated. In addition, a Ca L206R mutation-mediated degradation of RIIb was observed in adrenocortical cells in vitro. RIIb degradation was found to be mediated by caspases and by performing mutagenesis experiments of the regulatory subunits IIb and Ia, S114 phosphorylation of RIIb was identified to make RIIb susceptible for degradation. LC-MS/MS revealed RIIb interaction partners to differ in the presence of either Ca WT and Ca L206R. These newly identified interaction partners are possibly involved in targeting RIIb to subcellular compartments or bringing it into spatial proximity of degrading enzymes. Furthermore, reducing RIIb protein levels in an in vitro system were shown to correlate with increased cortisol secretion also in the absence of PRKACA mutations. The inhibiting role of RIIb in cortisol secretion demonstrates a new function of this regulatory PKA subunit, improving the understanding of the complex regulation of PKA as key regulator in many cells.}, subject = {Cushing-Syndrom}, language = {en} } @phdthesis{Strohmeier2021, author = {Strohmeier, Michael}, title = {FARN - A Novel UAV Flight Controller for Highly Accurate and Reliable Navigation}, doi = {10.25972/OPUS-22313}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis describes the functional principle of FARN, a novel flight controller for Unmanned Aerial Vehicles (UAVs) designed for mission scenarios that require highly accurate and reliable navigation. The required precision is achieved by combining low-cost inertial sensors and Ultra-Wide Band (UWB) radio ranging with raw and carrier phase observations from the Global Navigation Satellite System (GNSS). The flight controller is developed within the scope of this work regarding the mission requirements of two research projects, and successfully applied under real conditions. FARN includes a GNSS compass that allows a precise heading estimation even in environments where the conventional heading estimation based on a magnetic compass is not reliable. The GNSS compass combines the raw observations of two GNSS receivers with FARN's real-time capable attitude determination. Thus, especially the deployment of UAVs in Arctic environments within the project for ROBEX is possible despite the weak horizontal component of the Earth's magnetic field. Additionally, FARN allows centimeter-accurate relative positioning of multiple UAVs in real-time. This enables precise flight maneuvers within a swarm, but also the execution of cooperative tasks in which several UAVs have a common goal or are physically coupled. A drone defense system based on two cooperative drones that act in a coordinated manner and carry a commonly suspended net to capture a potentially dangerous drone in mid-air was developed in conjunction with the project MIDRAS. Within this thesis, both theoretical and practical aspects are covered regarding UAV development with an emphasis on the fields of signal processing, guidance and control, electrical engineering, robotics, computer science, and programming of embedded systems. Furthermore, this work aims to provide a condensed reference for further research in the field of UAVs. The work describes and models the utilized UAV platform, the propulsion system, the electronic design, and the utilized sensors. After establishing mathematical conventions for attitude representation, the actual core of the flight controller, namely the embedded ego-motion estimation and the principle control architecture are outlined. Subsequently, based on basic GNSS navigation algorithms, advanced carrier phase-based methods and their coupling to the ego-motion estimation framework are derived. Additionally, various implementation details and optimization steps of the system are described. The system is successfully deployed and tested within the two projects. After a critical examination and evaluation of the developed system, existing limitations and possible improvements are outlined.}, subject = {Drohne }, language = {en} } @phdthesis{Sapotta2021, author = {Sapotta, Meike}, title = {Perylene Bisimide Cyclophanes: Recognition of Alkaloids, Aggregation Behavior in Aqueous Environment and Guest-Mediated Chirality Transfer}, doi = {10.25972/OPUS-20002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200028}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Inspired by the fact that sufficient solubility in aqueous media can be achieved by functional substitution of perylene bisimides (PBIs) with polar groups, one of the essential aims of this thesis was the design and successful synthesis of the new water-soluble PBI cyclophanes [2PBI]-1m and [2PBI]-1p, which are appended with branched, hydrophilic oligoethylene glycol (OEG) chains. Subsequently, the focus was set on the elucidation of properties of PBI cyclophane hosts which are also of relevance for recognition processes in biological systems. The performance of the new amphiphilic PBI cyclophane [2PBI]-1p as synthetic receptors for various natural aromatic alkaloids in aqueous media was thoroughly investigated. Alkaloids represent a prominent class of ubiquitous nitrogen containing natural compounds with a great structural variety and diverse biological activity. As of yet, no chromophore host acting as a molecular probe for a range of alkaloids such as harmine or harmaline is known. In addition, the self-association behavior of cyclophane host [2PBI]-1m and its reference monomer in water was studied in order to gain insights into the thermodynamic driving forces affecting the self-assembly process of these two PBI systems in aqueous environment. Moreover, the chirality transfer upon guest binding previously observed for a PBI cyclophane was investigated further. The assignment of the underlying mechanism of guest recognition to either the induced fit or conformational selection model was of particular interest.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Beer2021, author = {Beer, Katharina}, title = {A Comparison of the circadian clock of highly social bees (\(Apis\) \(mellifera\)) and solitary bees (\(Osmia\) \(spec.\)): Circadian clock development, behavioral rhythms and neuroanatomical characterization of two central clock components (PER and PDF)}, doi = {10.25972/OPUS-15976}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159765}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Summary Bees, like many other organisms, evolved an endogenous circadian clock, which enables them to foresee daily environmental changes and exactly time foraging flights to periods of floral resource availability. The social lifestyle of a honey bee colony has been shown to influence circadian behavior in nurse bees, which do not exhibit rhythmic behavior when they are nursing. On the other hand, forager bees display strong circadian rhythms. Solitary bees, like the mason bee, do not nurse their offspring and do not live in hive communities, but face the same daily environmental changes as honey bees. Besides their lifestyle mason and honey bees differ in their development and life history, because mason bees overwinter after eclosion as adults in their cocoons until they emerge in spring. Honey bees do not undergo diapause and have a relatively short development of a few weeks until they emerge. In my thesis, I present a comparison of the circadian clock of social honey bees (Apis mellifera) and solitary mason bees (Osmia bicornis and Osmia cornuta) on the neuroanatomical level and behavioral output level. I firstly characterized in detail the localization of the circadian clock in the bee brain via the expression pattern of two clock components, namely the clock protein PERIOD (PER) and the neuropeptide Pigment Dispersing Factor (PDF), in the brain of honey bee and mason bee. PER is localized in lateral neuron clusters (which we called lateral neurons 1 and 2: LN1 and LN2) and dorsal neuron clusters (we called dorsal lateral neurons and dorsal neurons: DLN, DN), many glia cells and photoreceptor cells. This expression pattern is similar to the one in other insect species and indicates a common ground plan of clock cells among insects. In the LN2 neuron cluster with cell bodies located in the lateral brain, PER is co-expressed with PDF. These cells build a complex arborization network throughout the brain and provide the perfect structure to convey time information to brain centers, where complex behavior, e.g. sun-compass orientation and time memory, is controlled. The PDF arborizations centralize in a dense network (we named it anterio-lobular PDF hub: ALO) which is located in front of the lobula. In other insects, this fiber center is associated with the medulla (accessory medulla: AME). Few PDF cells build the ALO already in very early larval development and the cell number and complexity of the network grows throughout honey bee development. Thereby, dorsal regions are innervated first by PDF fibers and, in late larval development, the fibers grow laterally to the optic lobe and central brain. The overall expression pattern of PER and PDF are similar in adult social and solitary bees, but I found a few differences in the PDF network density in the posterior protocerebrum and the lamina, which may be associated with evolution of sociality in bees. Secondly, I monitored activity rhythms, for which I developed and established a device to monitor locomotor activity rhythms of individual honey bees with contact to a mini colony in the laboratory. This revealed new aspects of social synchronization and survival of young bees with indirect social contact to the mini colony (no trophalaxis was possible). For mason bees, I established a method to monitor emergence and locomotor activity rhythms and I could show that circadian emergence rhythms are entrainable by daily temperature cycles. Furthermore, I present the first locomotor activity rhythms of solitary bees, which show strong circadian rhythms in their behavior right after emergence. Honey bees needed several days to develop circadian locomotor rhythms in my experiments. I hypothesized that honey bees do not emerge with a fully matured circadian system in the hive, while solitary bees, without the protection of a colony, would need a fully matured circadian clock right away after emergence. Several indices in published work and preliminary studies support my hypothesis and future studies on PDF expression in different developmental stages in solitary bees may provide hard evidence.}, subject = {Chronobiologie}, language = {en} } @masterthesis{Schmittinger2021, type = {Bachelor Thesis}, author = {Schmittinger, Sarah}, title = {Observing the Digital Self}, issn = {2511-9486}, doi = {10.25972/OPUS-22505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225058}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {60}, year = {2021}, abstract = {Facebook, Instagram, Twitter \& Co. Social media have become an essential part of everyday life for many people in recent years, and as such, it is impossible to imagine a life without them. It seems self-evident to operate as an active prosumer in the net via various end devices. We create personal profiles in various social networks, exchange ideas, and connect with others. We take part in virtual events, and above all: we actively shape the web. The photo and video platform Instagram is one of the most popular social networking sites. Since 2010, the online service has offered its users the opportunity for personal development and space for creativity. Therefore, the personal profiles serve not only participatory reasons but also facilitate acts of self-representation. In addition to apparently visible aspects, questions about self-perception arise: How do users experience and evaluate their activities in virtual space? How do they perceive their actions between the offline and online world, and how intertwined are these spheres? Through an ethnographical approach, this work represents the attempt to look beyond the self-evident aspects of the digital self. For this purpose, two Instagram users were accompanied for more than a year.}, subject = {Kulturanthropologie}, language = {en} } @phdthesis{Brosi2021, author = {Brosi, Cornelia}, title = {Functional characterization of the TTF complex and its role in neurodevelopmental disorders}, doi = {10.25972/OPUS-15778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157783}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The eukaryotic gene expression requires extensive regulations to enable the homeostasis of the cell and to allow dynamic responses due to external stimuli. Although many regulatory mechanisms involve the transcription as the first step of the gene expression, intensive regulation occurs also in the post-transcriptional mRNA metabolism. Thereby, the particular composition of the mRNPs plays a central role as the components associated with the mRNA form a specific "mRNP code" which determines the fate of the mRNA. Many proteins which are involved in this regulation and the mRNA metabolism are affected in diseases and especially neurological disorders often result from an aberrant mRNP code which leads to changes in the regulation and expression of mRNPs. The focus of this work was on a trimeric protein complex which is termed TTF complex based on its subunits TDRD3, TOP3β and FMRP. Biochemical investigations revealed that the three components of the TTF complex are nucleo-cytosolic shuttle proteins which localize in the cytoplasm at the steady-state, associate with mRNPs and are presumably connected to the translation. Upon cellular stress conditions, the TTF components concentrate in stress granules. Thus, the TTF complex is part of the mRNP code, however its target RNAs and function are still completely unknown. Since the loss of functional FMRP results in the fragile X syndrome and TOP3β is associated with schizophrenia and intellectual disability, the TTF complex connects these phenotypically related neuro-psychiatric disorders with each other on a molecular level. Therefore, the aim of this work was to biochemically characterize the TTF complex and to define its function in the mRNA metabolism. In this work, evidence was provided that TDRD3 acts as the central unit of the TTF complex and directly binds to FMRP as well as to TOP3β. Thereby, the interaction of TDRD3 and TOP3β is very stable, whereas FMRP is a dynamic component. Interestingly, the TTF complex is not bound directly to mRNA, but is recruited via the exon junction complex (EJC) to mRNPs. This interaction is mediated by a specific binding motif of TDRD3, the EBM. Upon biochemical and biological investigations, it was possible to identify the interactome of the TTF complex and to define the role in the mRNA metabolism. The data revealed that the TTF complex is mainly associated with "early" mRNPs and is probably involved in the pioneer round of translation. Furthermore, TOP3β was found to bind directly to the ribosome and thus, establishes a connection between the EJC and the translation machinery. A reduction of the TTF components resulted in selective changes in the proteome in cultured cells, whereby individual protein subsets seem to be regulated rather than the global protein expression. Moreover, the enzymatic analysis of TOP3β indicated that TOP3β is a type IA topoisomerase which can catalytically attack not only DNA but also RNA. This aspect is particularly interesting with regard to the connection between early mRNPs and the translation which has been revealed in this work. The data obtained in this work suggest that the TTF complex plays a role in regulating the metabolism of an early mRNP subset possibly in the course of the pioneer round of translation. Until now, the link between an RNA topoisomerase and the mRNA metabolism is thereby unique and thus provides a completely new perspective on the steps in the post-transcriptional gene expression and its regulation.}, subject = {Messenger-RNP}, language = {en} }