@article{NowackaChmielewskaGrabowskaGrabowskietal.2022, author = {Nowacka-Chmielewska, Marta and Grabowska, Konstancja and Grabowski, Mateusz and Meybohm, Patrick and Burek, Malgorzata and Małecki, Andrzej}, title = {Running from stress: neurobiological mechanisms of exercise-induced stress resilience}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {21}, issn = {1422-0067}, doi = {10.3390/ijms232113348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297407}, year = {2022}, abstract = {Chronic stress, even stress of a moderate intensity related to daily life, is widely acknowledged to be a predisposing or precipitating factor in neuropsychiatric diseases. There is a clear relationship between disturbances induced by stressful stimuli, especially long-lasting stimuli, and cognitive deficits in rodent models of affective disorders. Regular physical activity has a positive effect on the central nervous system (CNS) functions, contributes to an improvement in mood and of cognitive abilities (including memory and learning), and is correlated with an increase in the expression of the neurotrophic factors and markers of synaptic plasticity as well as a reduction in the inflammatory factors. Studies published so far show that the energy challenge caused by physical exercise can affect the CNS by improving cellular bioenergetics, stimulating the processes responsible for the removal of damaged organelles and molecules, and attenuating inflammation processes. Regular physical activity brings another important benefit: increased stress robustness. The evidence from animal studies is that a sedentary lifestyle is associated with stress vulnerability, whereas a physically active lifestyle is associated with stress resilience. Here, we have performed a comprehensive PubMed Search Strategy for accomplishing an exhaustive literature review. In this review, we discuss the findings from experimental studies on the molecular and neurobiological mechanisms underlying the impact of exercise on brain resilience. A thorough understanding of the mechanisms underlying the neuroprotective potential of preconditioning exercise and of the role of exercise in stress resilience, among other things, may open further options for prevention and therapy in the treatment of CNS diseases.}, language = {en} } @article{SedaghatHamedaniRebsKayvanpouretal.2022, author = {Sedaghat-Hamedani, Farbod and Rebs, Sabine and Kayvanpour, Elham and Zhu, Chenchen and Amr, Ali and M{\"u}ller, Marion and Haas, Jan and Wu, Jingyan and Steinmetz, Lars M. and Ehlermann, Philipp and Streckfuss-B{\"o}meke, Katrin and Frey, Norbert and Meder, Benjamin}, title = {Genotype complements the phenotype: identification of the pathogenicity of an LMNA splice variant by nanopore long-read sequencing in a large DCM family}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {20}, issn = {1422-0067}, doi = {10.3390/ijms232012230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290415}, year = {2022}, abstract = {Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and is of familial origin in 20-40\% of cases. Genetic testing by next-generation sequencing (NGS) has yielded a definite diagnosis in many cases; however, some remain elusive. In this study, we used a combination of NGS, human-induced pluripotent-stem-cell-derived cardiomyocytes (iPSC-CMs) and nanopore long-read sequencing to identify the causal variant in a multi-generational pedigree of DCM. A four-generation family with familial DCM was investigated. Next-generation sequencing (NGS) was performed on 22 family members. Skin biopsies from two affected family members were used to generate iPSCs, which were then differentiated into iPSC-CMs. Short-read RNA sequencing was used for the evaluation of the target gene expression, and long-read RNA nanopore sequencing was used to evaluate the relevance of the splice variants. The pedigree suggested a highly penetrant, autosomal dominant mode of inheritance. The phenotype of the family was suggestive of laminopathy, but previous genetic testing using both Sanger and panel sequencing only yielded conflicting evidence for LMNA p.R644C (rs142000963), which was not fully segregated. By re-sequencing four additional affected family members, further non-coding LMNA variants could be detected: rs149339264, rs199686967, rs201379016, and rs794728589. To explore the roles of these variants, iPSC-CMs were generated. RNA sequencing showed the LMNA expression levels to be significantly lower in the iPSC-CMs of the LMNA variant carriers. We demonstrated a dysregulated sarcomeric structure and altered calcium homeostasis in the iPSC-CMs of the LMNA variant carriers. Using targeted nanopore long-read sequencing, we revealed the biological significance of the variant c.356+1G>A, which generates a novel 5′ splice site in exon 1 of the cardiac isomer of LMNA, causing a nonsense mRNA product with almost complete RNA decay and haploinsufficiency. Using novel molecular analysis and nanopore technology, we demonstrated the pathogenesis of the rs794728589 (c.356+1G>A) splice variant in LMNA. This study highlights the importance of precise diagnostics in the clinical management and workup of cardiomyopathies.}, language = {en} } @article{RajendranRajendranGuptaetal.2022, author = {Rajendran, Ranjithkumar and Rajendran, Vinothkumar and Gupta, Liza and Shirvanchi, Kian and Schunin, Darja and Karnati, Srikanth and Giraldo-Vel{\´a}squez, Mario and Berghoff, Martin}, title = {Interferon beta-1a versus combined interferon beta-1a and oligodendrocyte-specific FGFR1 deletion in experimental autoimmune encephalomyelitis}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {20}, issn = {1422-0067}, doi = {10.3390/ijms232012183}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290401}, year = {2022}, abstract = {Recombinant beta interferons-1 (IFNβ-1) are used as first line therapies in patients with relapsing multiple sclerosis (MS), a chronic inflammatory and neurodegenerative disease of the CNS. IFNβ-1a/b has moderate effects on the prevention of relapses and slowing of disease progression. Fibroblast growth factors (FGFs) and FGF receptors (FGFRs) are known to play a key role in the pathology of MS and its model EAE. To investigate the effects of short-term treatment with s.c. IFNβ-1a versus the combined application of s.c. IFNβ-1a and oligodendrocyte-specific deletion of FGFR1 (Fgfr1\(^{ind-/-}\) mice) in MOG\(_{35-55}\)-induced EAE. IFNβ-1a (30 mg/kg) was applied s.c. from days 0-7 p.i. of EAE in controls and Fgfr1\(^{ind-/-}\) mice. FGFR signaling proteins associated with inflammation/degeneration in MS/EAE were analyzed by western blot in the spinal cord. Further, FGFR1 in Oli-neu oligodendrocytes were inhibited by PD166866 and treated with IFNβ-1a (400 ng/mL). Application of IFNβ-1a over 8 days resulted in less symptoms only at the peak of disease (days 9-11) compared to controls. Application of IFNβ-1a in Fgfr1\(^{ind-/-}\) mice resulted in less symptoms primarily in the chronic phase of EAE. Fgfr1\(^{ind-/-}\) mice treated with IFNβ-1a showed increased expression of pERK and BDNF. In Oli-neu oligodendrocytes, treatment with PD166866 and IFNβ-1a also showed an increased expression of pERK and BDNF/TrkB. These data suggest that the beneficial effects in the chronic phase of EAE and on signaling molecules associated with ERK and BDNF expression are caused by the modulation of FGFR1 and not by interferon beta-1a. FGFR may be a potential target for therapy in MS.}, language = {en} } @article{SolimandoPalumboPragnelletal.2022, author = {Solimando, Antonio G. and Palumbo, Carmen and Pragnell, Mary Victoria and Bittrich, Max and Argentiero, Antonella and Krebs, Markus}, title = {Aplastic anemia as a roadmap for bone marrow failure: an overview and a clinical workflow}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms231911765}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290440}, year = {2022}, abstract = {In recent years, it has become increasingly apparent that bone marrow (BM) failures and myeloid malignancy predisposition syndromes are characterized by a wide phenotypic spectrum and that these diseases must be considered in the differential diagnosis of children and adults with unexplained hematopoiesis defects. Clinically, hypocellular BM failure still represents a challenge in pathobiology-guided treatment. There are three fundamental topics that emerged from our review of the existing data. An exogenous stressor, an immune defect, and a constitutional genetic defect fuel a vicious cycle of hematopoietic stem cells, immune niches, and stroma compartments. A wide phenotypic spectrum exists for inherited and acquired BM failures and predispositions to myeloid malignancies. In order to effectively manage patients, it is crucial to establish the right diagnosis. New theragnostic windows can be revealed by exploring BM failure pathomechanisms.}, language = {en} } @article{BanickaMartensPanzeretal.2022, author = {Banicka, Veronika and Martens, Marie Christine and Panzer, R{\"u}diger and Schrama, David and Emmert, Steffen and Boeckmann, Lars and Thiem, Alexander}, title = {Homozygous CRISPR/Cas9 knockout generated a novel functionally active exon 1 skipping XPA variant in melanoma cells}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms231911649}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290427}, year = {2022}, abstract = {Defects in DNA repair pathways have been associated with an improved response to immune checkpoint inhibition (ICI). In particular, patients with the nucleotide excision repair (NER) defect disease Xeroderma pigmentosum (XP) responded impressively well to ICI treatment. Recently, in melanoma patients, pretherapeutic XP gene expression was predictive for anti-programmed cell death-1 (PD-1) ICI response. The underlying mechanisms of this finding are still to be revealed. Therefore, we used CRISPR/Cas9 to disrupt XPA in A375 melanoma cells. The resulting subclonal cell lines were investigated by Sanger sequencing. Based on their genetic sequence, candidates from XPA exon 1 and 2 were selected and further analyzed by immunoblotting, immunofluorescence, HCR and MTT assays. In XPA exon 1, we established a homozygous (c.19delG; p.A7Lfs*8) and a compound heterozygous (c.19delG/c.19_20insG; p.A7Lfs*8/p.A7Gfs*55) cell line. In XPA exon 2, we generated a compound heterozygous mutated cell line (c.206_208delTTG/c.208_209delGA; p.I69_D70delinsN/p.D70Hfs*31). The better performance of the homozygous than the heterozygous mutated exon 1 cells in DNA damage repair (HCR) and post-UV-C cell survival (MTT), was associated with the expression of a novel XPA protein variant. The results of our study serve as the fundamental basis for the investigation of the immunological consequences of XPA disruption in melanoma.}, language = {en} } @article{ButtHowardRaman2022, author = {Butt, Elke and Howard, Cory M. and Raman, Dayanidhi}, title = {LASP1 in cellular signaling and gene expression: more than just a cytoskeletal regulator}, series = {Cells}, volume = {11}, journal = {Cells}, number = {23}, issn = {2073-4409}, doi = {10.3390/cells11233817}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297447}, year = {2022}, abstract = {LIM and SH3 protein 1 was originally identified as a structural cytoskeletal protein with scaffolding function. However, recent data suggest additional roles in cell signaling and gene expression, especially in tumor cells. These novel functions are primarily regulated by the site-specific phosphorylation of LASP1. This review will focus on specific phosphorylation-dependent interaction between LASP1 and cellular proteins that orchestrate primary tumor progression and metastasis. More specifically, we will describe the role of LASP1 in chemokine receptor, and PI3K/AKT signaling. We outline the nuclear role for LASP1 in terms of epigenetics and transcriptional regulation and modulation of oncogenic mRNA translation. Finally, newly identified roles for the cytoskeletal function of LASP1 next to its known canonical F-actin binding properties are included.}, language = {en} } @article{SchwanLangSchlosseretal.2022, author = {Schwan, Carsten and Lang, Alexander E. and Schlosser, Andreas and Fujita-Becker, Setsuko and AlHaj, Abdulatif and Schr{\"o}der, Rasmus R. and Faix, Jan and Aktories, Klaus and Mannherz, Hans Georg}, title = {Inhibition of Arp2/3 complex after ADP-ribosylation of Arp2 by binary Clostridioides toxins}, series = {Cells}, volume = {11}, journal = {Cells}, number = {22}, issn = {2073-4409}, doi = {10.3390/cells11223661}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297454}, year = {2022}, abstract = {Clostridioides bacteria are responsible for life threatening infections. Here, we show that in addition to actin, the binary toxins CDT, C2I, and Iota from Clostridioides difficile, botulinum, and perfrigens, respectively, ADP-ribosylate the actin-related protein Arp2 of Arp2/3 complex and its additional components ArpC1, ArpC2, and ArpC4/5. The Arp2/3 complex is composed of seven subunits and stimulates the formation of branched actin filament networks. This activity is inhibited after ADP-ribosylation of Arp2. Translocation of the ADP-ribosyltransferase component of CDT toxin into human colon carcinoma Caco2 cells led to ADP-ribosylation of cellular Arp2 and actin followed by a collapse of the lamellipodial extensions and F-actin network. Exposure of isolated mouse colon pieces to CDT toxin induced the dissolution of the enterocytes leading to luminal aggregation of cellular debris and the collapse of the mucosal organization. Thus, we identify the Arp2/3 complex as hitherto unknown target of clostridial ADP-ribosyltransferases.}, language = {en} } @article{WulfBarkovitsSchorketal.2022, author = {Wulf, Maximilian and Barkovits, Katalin and Schork, Karin and Eisenacher, Martin and Riederer, Peter and Gerlach, Manfred and Eggers, Britta and Marcus, Katrin}, title = {The proteome of neuromelanin granules in dementia with Lewy bodies}, series = {Cells}, volume = {11}, journal = {Cells}, number = {22}, issn = {2073-4409}, doi = {10.3390/cells11223538}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297465}, year = {2022}, abstract = {Neuromelanin granules (NMGs) are organelle-like structures present in the human substantia nigra pars compacta. In addition to neuromelanin, NMGs contain proteins, lipids and metals. As NMG-containing dopaminergic neurons are preferentially lost in Parkinson's disease and dementia with Lewy bodies (DLB), it is assumed that NMGs may play a role in neurodegenerative processes. Until now, this role is not completely understood and needs further investigation. We therefore set up an exploratory proteomic study to identify differences in the proteomic profile of NMGs from DLB patients (n = 5) compared to healthy controls (CTRL, n = 5). We applied a laser microdissection and mass-spectrometry-based approach, in which we used targeted mass spectrometric experiments for validation. In NMG-surrounding (SN\(_{Surr.}\)) tissue of DLB patients, we found evidence for ongoing oxidative damage and an impairment of protein degradation. As a potentially disease-related mechanism, we found α-synuclein and protein S100A9 to be enriched in NMGs of DLB cases, while the abundance of several ribosomal proteins was significantly decreased. As S100A9 is known to be able to enhance the formation of toxic α-synuclein fibrils, this finding points towards an involvement of NMGs in pathogenesis, however the exact role of NMGs as either neuroprotective or neurotoxic needs to be further investigated. Nevertheless, our study provides evidence for an impairment of protein degradation, ongoing oxidative damage and accumulation of potentially neurotoxic protein aggregates to be central mechanisms of neurodegeneration in DLB.}, language = {en} } @article{KoenigRammeFaustetal.2022, author = {Koenig, Leopold and Ramme, Anja Patricia and Faust, Daniel and Mayer, Manuela and Fl{\"o}tke, Tobias and Gerhartl, Anna and Brachner, Andreas and Neuhaus, Winfried and Appelt-Menzel, Antje and Metzger, Marco and Marx, Uwe and Dehne, Eva-Maria}, title = {A human stem cell-derived brain-liver chip for assessing blood-brain-barrier permeation of pharmaceutical drugs}, series = {Cells}, volume = {11}, journal = {Cells}, number = {20}, issn = {2073-4409}, doi = {10.3390/cells11203295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290375}, year = {2022}, abstract = {Significant advancements in the field of preclinical in vitro blood-brain barrier (BBB) models have been achieved in recent years, by developing monolayer-based culture systems towards complex multi-cellular assays. The coupling of those models with other relevant organoid systems to integrate the investigation of blood-brain barrier permeation in the larger picture of drug distribution and metabolization is still missing. Here, we report for the first time the combination of a human induced pluripotent stem cell (hiPSC)-derived blood-brain barrier model with a cortical brain and a liver spheroid model from the same donor in a closed microfluidic system (MPS). The two model compounds atenolol and propranolol were used to measure permeation at the blood-brain barrier and to assess metabolization. Both substances showed an in vivo-like permeation behavior and were metabolized in vitro. Therefore, the novel multi-organ system enabled not only the measurement of parent compound concentrations but also of metabolite distribution at the blood-brain barrier.}, language = {en} } @article{SchmittTatschVollhardtetal.2022, author = {Schmitt, Andrea and Tatsch, Laura and Vollhardt, Alisa and Schneider-Axmann, Thomas and Raabe, Florian J. and Roell, Lukas and Heinsen, Helmut and Hof, Patrick R. and Falkai, Peter and Schmitz, Christoph}, title = {Decreased oligodendrocyte number in hippocampal subfield CA4 in schizophrenia: a replication study}, series = {Cells}, volume = {11}, journal = {Cells}, number = {20}, issn = {2073-4409}, doi = {10.3390/cells11203242}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290360}, year = {2022}, abstract = {Hippocampus-related cognitive deficits in working and verbal memory are frequent in schizophrenia, and hippocampal volume loss, particularly in the cornu ammonis (CA) subregions, was shown by magnetic resonance imaging studies. However, the underlying cellular alterations remain elusive. By using unbiased design-based stereology, we reported a reduction in oligodendrocyte number in CA4 in schizophrenia and of granular neurons in the dentate gyrus (DG). Here, we aimed to replicate these findings in an independent sample. We used a stereological approach to investigate the numbers and densities of neurons, oligodendrocytes, and astrocytes in CA4 and of granular neurons in the DG of left and right hemispheres in 11 brains from men with schizophrenia and 11 brains from age- and sex-matched healthy controls. In schizophrenia, a decreased number and density of oligodendrocytes was detected in the left and right CA4, whereas mean volumes of CA4 and the DG and the numbers and density of neurons, astrocytes, and granular neurons were not different in patients and controls, even after adjustment of variables because of positive correlations with postmortem interval and age. Our results replicate the previously described decrease in oligodendrocytes bilaterally in CA4 in schizophrenia and point to a deficit in oligodendrocyte maturation or a loss of mature oligodendrocytes. These changes result in impaired myelination and neuronal decoupling, both of which are linked to altered functional connectivity and subsequent cognitive dysfunction in schizophrenia.}, language = {en} }