@article{BeckHovhanyanMenegazzietal.2018, author = {Beck, Katherina and Hovhanyan, Anna and Menegazzi, Pamela and Helfrich-F{\"o}rster, Charlotte and Raabe, Thomas}, title = {Drosophila RSK Influences the Pace of the Circadian Clock by Negative Regulation of Protein Kinase Shaggy Activity}, series = {Frontiers in Molecular Neuroscience}, volume = {11}, journal = {Frontiers in Molecular Neuroscience}, number = {122}, issn = {1662-5099}, doi = {10.3389/fnmol.2018.00122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196034}, year = {2018}, abstract = {Endogenous molecular circadian clocks drive daily rhythmic changes at the cellular, physiological, and behavioral level for adaptation to and anticipation of environmental signals. The core molecular system consists of autoregulatory feedback loops, where clock proteins inhibit their own transcription. A complex and not fully understood interplay of regulatory proteins influences activity, localization and stability of clock proteins to set the pace of the clock. This study focuses on the molecular function of Ribosomal S6 Kinase (RSK) in the Drosophila melanogaster circadian clock. Mutations in the human rsk2 gene cause Coffin-Lowry syndrome, which is associated with severe mental disabilities. Knock-out studies with Drosophila ortholog rsk uncovered functions in synaptic processes, axonal transport and adult behavior including associative learning and circadian activity. However, the molecular targets of RSK remain elusive. Our experiments provide evidence that RSK acts in the key pace maker neurons as a negative regulator of Shaggy (SGG) kinase activity, which in turn determines timely nuclear entry of the clock proteins Period and Timeless to close the negative feedback loop. Phosphorylation of serine 9 in SGG is mediated by the C-terminal kinase domain of RSK, which is in agreement with previous genetic studies of RSK in the circadian clock but argues against the prevailing view that only the N-terminal kinase domain of RSK proteins carries the effector function. Our data provide a mechanistic explanation how RSK influences the molecular clock and imply SGG S9 phosphorylation by RSK and other kinases as a convergence point for diverse cellular and external stimuli.}, language = {en} } @article{LiDengXieetal.2018, author = {Li, Cong and Deng, Xiaobing and Xie, Xiaowen and Liu, Ying and Friedmann Angeli, Jos{\´e} Pedro and Lai, Luhua}, title = {Activation of Glutathione Peroxidase 4 as a Novel Anti-inflammatory Strategy}, series = {Frontiers in Pharmacology}, volume = {9}, journal = {Frontiers in Pharmacology}, number = {1120}, issn = {1663-9812}, doi = {10.3389/fphar.2018.01120}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195985}, year = {2018}, abstract = {The anti-oxidative enzyme, glutathione peroxidase 4 (GPX4), helps to promote inflammation resolution by eliminating oxidative species produced by the arachidonic acid (AA) metabolic network. Up-regulating its activity has been proposed as a promising strategy for inflammation intervention. In the present study, we aimed to study the effect of GPX4 activator on the AA metabolic network and inflammation related pathways. Using combined computational and experimental screen, we identified a novel compound that can activate the enzyme activity of GPX4 by more than two folds. We further assessed its potential in a series of cellular assays where GPX4 was demonstrated to play a regulatory role. We are able to show that GPX4 activation suppressed inflammatory conditions such as oxidation of AA and NF-κB pathway activation. We further demonstrated that this GPX4 activator can decrease the intracellular ROS level and suppress ferroptosis. Our study suggests that GPX4 activators can be developed as anti-inflammatory or cyto-protective agent in lipid-peroxidation-mediated diseases.}, language = {en} } @article{SchaeferZhengvanBrederodeetal.2018, author = {Schaefer, Natascha and Zheng, Fang and van Brederode, Johannes and Berger, Alexandra and Leacock, Sophie and Hirata, Hiromi and Paige, Christopher J. and Harvey, Robert J. and Alzheimer, Christian and Villmann, Carmen}, title = {Functional Consequences of the Postnatal Switch From Neonatal to Mutant Adult Glycine Receptor α1 Subunits in the Shaky Mouse Model of Startle Disease}, series = {Frontiers in Molecular Neuroscience}, volume = {11}, journal = {Frontiers in Molecular Neuroscience}, number = {167}, issn = {1662-5099}, doi = {10.3389/fnmol.2018.00167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196056}, year = {2018}, abstract = {Mutations in GlyR α1 or β subunit genes in humans and rodents lead to severe startle disease characterized by rigidity, massive stiffness and excessive startle responses upon unexpected tactile or acoustic stimuli. The recently characterized startle disease mouse mutant shaky carries a missense mutation (Q177K) in the β8-β9 loop within the large extracellular N-terminal domain of the GlyR α1 subunit. This results in a disrupted hydrogen bond network around K177 and faster GlyR decay times. Symptoms in mice start at postnatal day 14 and increase until premature death of homozygous shaky mice around 4-6 weeks after birth. Here we investigate the in vivo functional effects of the Q177K mutation using behavioral analysis coupled to protein biochemistry and functional assays. Western blot analysis revealed GlyR α1 subunit expression in wild-type and shaky animals around postnatal day 7, a week before symptoms in mutant mice become obvious. Before 2 weeks of age, homozygous shaky mice appeared healthy and showed no changes in body weight. However, analysis of gait and hind-limb clasping revealed that motor coordination was already impaired. Motor coordination and the activity pattern at P28 improved significantly upon diazepam treatment, a pharmacotherapy used in human startle disease. To investigate whether functional deficits in glycinergic neurotransmission are present prior to phenotypic onset, we performed whole-cell recordings from hypoglossal motoneurons (HMs) in brain stem slices from wild-type and shaky mice at different postnatal stages. Shaky homozygotes showed a decline in mIPSC amplitude and frequency at P9-P13, progressing to significant reductions in mIPSC amplitude and decay time at P18-24 compared to wild-type littermates. Extrasynaptic GlyRs recorded by bath-application of glycine also revealed reduced current amplitudes in shaky mice compared to wild-type neurons, suggesting that presynaptic GlyR function is also impaired. Thus, a distinct, but behaviorally ineffective impairment of glycinergic synapses precedes the symptoms onset in shaky mice. These findings extend our current knowledge on startle disease in the shaky mouse model in that they demonstrate how the progression of GlyR dysfunction causes, with a delay of about 1 week, the appearance of disease symptoms.}, language = {en} } @article{BahmerGupta2018, author = {Bahmer, Andreas and Gupta, Daya Shankar}, title = {Role of Oscillations in Auditory Temporal Processing: A General Model for Temporal Processing of Sensory Information in the Brain?}, series = {Frontiers in Neuroscience}, volume = {12}, journal = {Frontiers in Neuroscience}, number = {793}, issn = {1662-453X}, doi = {10.3389/fnins.2018.00793}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196087}, year = {2018}, abstract = {We review the role of oscillations in the brain and in the auditory system showing that the ability of humans to distinguish changes in pitch can be explained as a precise analysis of temporal information in auditory signals by neural oscillations. The connections between auditory brain stem chopper neurons construct neural oscillators, which discharge spikes at various constant intervals that are integer multiples of 0.4 ms, contributing to the temporal processing of auditory cochlear output. This is subsequently spatially mapped in the inferior colliculus. Electrophysiological measurements of auditory chopper neurons in different species show oscillations with periods which are integer multiples of 0.4 ms. The constant intervals of 0.4 ms can be attributed to the smallest synaptic delay between interconnected simulated chopper neurons. We also note the patterns of similarities between microcircuits in the brain stem and other parts of the brain (e.g., the pallidum, reticular formation, locus coeruleus, oculomotor nuclei, limbic system, amygdala, hippocampus, basal ganglia and substantia nigra), dedicated to the processing of temporal information. Similarities in microcircuits across the brain reflect the importance of one of the key mechanisms in the information processing in the brain, namely the temporal coupling of different neural events via coincidence detection.}, language = {en} } @article{GromerMadeiraGastetal.2018, author = {Gromer, Daniel and Madeira, Oct{\´a}via and Gast, Philipp and Nehfischer, Markus and Jost, Michael and M{\"u}ller, Mathias and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {Height Simulation in a Virtual Reality CAVE System: Validity of Fear Responses and Effects of an Immersion Manipulation}, series = {Frontiers in Human Neuroscience}, volume = {12}, journal = {Frontiers in Human Neuroscience}, number = {372}, issn = {1662-5161}, doi = {10.3389/fnhum.2018.00372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196113}, year = {2018}, abstract = {Acrophobia is characterized by intense fear in height situations. Virtual reality (VR) can be used to trigger such phobic fear, and VR exposure therapy (VRET) has proven effective for treatment of phobias, although it remains important to further elucidate factors that modulate and mediate the fear responses triggered in VR. The present study assessed verbal and behavioral fear responses triggered by a height simulation in a 5-sided cave automatic virtual environment (CAVE) with visual and acoustic simulation and further investigated how fear responses are modulated by immersion, i.e., an additional wind simulation, and presence, i.e., the feeling to be present in the VE. Results revealed a high validity for the CAVE and VE in provoking height related self-reported fear and avoidance behavior in accordance with a trait measure of acrophobic fear. Increasing immersion significantly increased fear responses in high height anxious (HHA) participants, but did not affect presence. Nevertheless, presence was found to be an important predictor of fear responses. We conclude that a CAVE system can be used to elicit valid fear responses, which might be further enhanced by immersion manipulations independent from presence. These results may help to improve VRET efficacy and its transfer to real situations.}, language = {en} } @article{VenturaBortWirknerGenheimeretal.2018, author = {Ventura-Bort, Carlos and Wirkner, Janine and Genheimer, Hannah and Wendt, Julia and Hamm, Alfons O. and Weymar, Mathias}, title = {Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on the P300 and Alpha-Amylase Level: A Pilot Study}, series = {Frontiers in Human Neuroscience}, volume = {12}, journal = {Frontiers in Human Neuroscience}, number = {202}, issn = {1662-5161}, doi = {10.3389/fnhum.2018.00202}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196129}, year = {2018}, abstract = {Recent research suggests that the P3b may be closely related to the activation of the locus coeruleus-norepinephrine (LC-NE) system. To further study the potential association, we applied a novel technique, the non-invasive transcutaneous vagus nerve stimulation (tVNS), which is speculated to increase noradrenaline levels. Using a within-subject cross-over design, 20 healthy participants received continuous tVNS and sham stimulation on two consecutive days (stimulation counterbalanced across participants) while performing a visual oddball task. During stimulation, oval non-targets (standard), normal-head (easy) and rotated-head (difficult) targets, as well as novel stimuli (scenes) were presented. As an indirect marker of noradrenergic activation we also collected salivary alpha-amylase (sAA) before and after stimulation. Results showed larger P3b amplitudes for target, relative to standard stimuli, irrespective of stimulation condition. Exploratory post hoc analyses, however, revealed that, in comparison to standard stimuli, easy (but not difficult) targets produced larger P3b (but not P3a) amplitudes during active tVNS, compared to sham stimulation. For sAA levels, although main analyses did not show differential effects of stimulation, direct testing revealed that tVNS (but not sham stimulation) increased sAA levels after stimulation. Additionally, larger differences between tVNS and sham stimulation in P3b magnitudes for easy targets were associated with larger increase in sAA levels after tVNS, but not after sham stimulation. Despite preliminary evidence for a modulatory influence of tVNS on the P3b, which may be partly mediated by activation of the noradrenergic system, additional research in this field is clearly warranted. Future studies need to clarify whether tVNS also facilitates other processes, such as learning and memory, and whether tVNS can be used as therapeutic tool.}, language = {en} } @article{MahyeraSchneiderHalligerKelleretal.2018, author = {Mahyera, Alexis S. and Schneider, Tamara and Halliger-Keller, Birgit and Schrooten, Katja and H{\"o}rner, Eva-Maria and Rost, Simone and Kress, Wolfram}, title = {Distribution and Structure of DM2 Repeat Tract Alleles in the German Population}, series = {Frontiers in Neurology}, volume = {9}, journal = {Frontiers in Neurology}, number = {463}, issn = {1664-2295}, doi = {10.3389/fneur.2018.00463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196252}, year = {2018}, abstract = {Autosomal dominant inherited Myotonic dystrophy type 1 and 2 (DM1 and DM2) are the most frequent muscle dystrophies in the European population and are caused by repeat expansion mutations. For Germany cumulative empiric evidence suggests an estimated prevalence of DM2 of roughly 9 in 100,000, therefore being as prevalent as DM1. In DM2, a (CCTG)n repeat tract located in the first intron of the CNBP gene is expanded. The CCTG repeat tract is part of a complex repeat structure comprising not only CCTG tetraplets but also repeated TG dinucleotides and TCTG tetraplet elements as well as NCTG interruptions. Here, we provide the distribution of normal sized alleles in the German population, which was found to be highly similar to the Slovak population. Sequencing of 34 unexpanded healthy range alleles in DM2 positive patients (heterozygous for a full expansion) revealed that the CCTG repeat tract is usually interrupted by at least three tetraplets which according to current opinion is supposed to render it stable against expansion. Interestingly, only the largest analyzed normal allele had 23 uninterrupted CCTGs and consequently could represent an instable early premutation allele. In our diagnostic history of DM2 cases, a total of 18 premutations were detected in 16 independent cases. Here, we describe two premutation families, one with an expansion from a premutation allele and the other with a contraction of a full expansion down to a premutation allele. Our diagnostic results support the general assumption that the premutation range of unstable CCTG stretches lies obviously between 25 and 75 CCTGs. However, the clinical significance of premutation alleles is still unclear. In the light of the two described families we suggest incomplete penetrance. Thus, as it was proposed for other repeat expansion diseases (e.g., Huntington's disease), a fluid transition of penetrance is more likely rather than a clear cut CCTG number threshold.}, language = {en} } @article{PrustyChowdhuryGulveetal.2018, author = {Prusty, Bhupesh K. and Chowdhury, Suvagata R. and Gulve, Nitish and Rudel, Thomas}, title = {Peptidase Inhibitor 15 (PI15) Regulates Chlamydial CPAF Activity}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {8}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {183}, issn = {2235-2988}, doi = {10.3389/fcimb.2018.00183}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196918}, year = {2018}, abstract = {Obligate intracellular pathogenic Chlamydia trachomatis express several serine proteases whose roles in chlamydial development and pathogenicity are not completely understood. The chlamydial protease CPAF is expressed during the replicative phase of the chlamydial developmental cycle and is secreted into the lumen of the Chlamydia-containing vacuole called inclusion. How the secreted protease is activated in the inclusion lumen is currently not fully understood. We have identified human serine peptidase inhibitor PI15 as a potential host factor involved in the regulation of CPAF activation. Silencing expression as well as over expression of PI15 affected normal development of Chlamydia. PI15 was transported into the chlamydial inclusion lumen where it co-localized with CPAF aggregates. We show that PI15 binds to the CPAF zymogen and potentially induces CPAF protease activity at low concentrations. However, at high concentrations PI15 inhibits CPAF activity possibly by blocking its protease domain. Our findings shed light on a new aspect of chlamydial host co-evolution which involves the recruitment of host cell proteins into the inclusion to control the activation of bacterial proteases like CPAF that are important for the normal development of Chlamydia.}, language = {en} } @article{AnelliOrdasKneitzetal.2018, author = {Anelli, Viviana and Ordas, Anita and Kneitz, Susanne and Sagredo, Leonel Munoz and Gourain, Victor and Schartl, Manfred and Meijer, Annemarie H. and Mione, Marina}, title = {Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression}, series = {Frontiers in Genetics}, volume = {9}, journal = {Frontiers in Genetics}, number = {675}, issn = {1664-8021}, doi = {10.3389/fgene.2018.00675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196963}, year = {2018}, abstract = {Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc\&acc=GSE37015.}, language = {en} } @article{DasariShopovaStroeetal.2018, author = {Dasari, Prasad and Shopova, Iordana A. and Stroe, Maria and Wartenberg, Dirk and Martin-Dahse, Hans and Beyersdorf, Niklas and Hortschansky, Peter and Dietrich, Stefanie and Cseresny{\´e}s, Zolt{\´a}n and Figge, Marc Thilo and Westermann, Martin and Skerka, Christine and Brakhage, Axel A. and Zipfel, Peter F.}, title = {Aspf2 From Aspergillus fumigatus Recruits Human Immune Regulators for Immune Evasion and Cell Damage}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {1635}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.01635}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197013}, year = {2018}, abstract = {The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6-7 and SCR20. FHL-1 binds via SCRs6-7, and FHR1 via SCRs3-5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Δaspf2 knockout strain was generated which bound Factor H with 28\% and FHL-1 with 42\% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Δaspf2 conidia had substantially more C3b (>57\%) deposited on their surface. Consequently, Δaspf2 conidia were more efficiently phagocytosed (>20\%) and killed (44\%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration.}, language = {en} }