@article{OPUS4-14422, title = {Measurement of colour flow with the jet pull angle in t\(\overline{t}\) events using the ATLAS detector at \(\sqrt {s}\)=8 TeV}, series = {Physics Letters B}, volume = {750}, journal = {Physics Letters B}, organization = {ATLAS Collaboration}, doi = {10.1016/j.physletb.2015.09.051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144229}, pages = {475-493}, year = {2015}, abstract = {The distribution and orientation of energy inside jets is predicted to be an experimental handle on colour connections between the hard-scatter quarks and gluons initiating the jets. This Letter presents a measurement of the distribution of one such variable, the jet pull angle. The pull angle is measured for jets produced in t\(\overline{t}\) events with one W boson decaying leptonically and the other decaying to jets using 20.3 fb\(^{-1}\) of data recorded with the ATLAS detector at a centre-of-mass energy of \(\sqrt {s}\)=8 TeV at the LHC. The jet pull angle distribution is corrected for detector resolution and acceptance effects and is compared to various models.}, language = {en} } @article{OPUS4-14339, title = {Measurement of transverse energy-energy correlations in multi-jet events in pp collisions at \(\sqrt {s}\)=7 TeV using the ATLAS detector and determination of the strong coupling constant αs(m\(_{Z}\))}, series = {Physics Letters B}, volume = {750}, journal = {Physics Letters B}, organization = {ATLAS Collaboration}, doi = {10.1016/j.physletb.2015.09.050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143398}, pages = {427-447}, year = {2015}, abstract = {High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy-energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 pb\(^{-1}\). The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the Z   boson mass is determined to be αs(m\(_{Z}\))=0.1173±0.0010 (exp.) \(^{+0.0065}_{-0.0026}\) (theo.).}, language = {en} } @article{OPUS4-14337, title = {Measurement of the branching ratio Γ(Λ\(^0_b\)→ψ(2S)Λ\(^0\))/Γ(Λ\(^0_b\)→J/ψΛ\(^0\)) with the ATLAS detector}, series = {Physics Letters B}, volume = {751}, journal = {Physics Letters B}, organization = {ATLAS Collaboration}, doi = {10.1016/j.physletb.2015.10.009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143375}, pages = {63-80}, year = {2015}, abstract = {An observation of the View the Λ\(^0_b\)→ψ(2S)Λ\(^0\) decay and a comparison of its branching fraction with that of the Λ\(^0_b\)→J/ψΛ\(^0\) decay has been made with the ATLAS detector in proton-proton collisions at \(\sqrt {s}\)=8 TeV at the LHC using an integrated luminosity of 20.6 fb\(^{-1}\). The J/ψJ/ψ and ψ(2S) mesons are reconstructed in their decays to a muon pair, while the Λ\(^0\)→pπ\(^-\) decay is exploited for the Λ\(^0\) baryon reconstruction. The Λ\(^0_b\) baryons are reconstructed with transverse momentum p\(_T\)>10 GeV pT>10 GeV and pseudorapidity |η|<2.1. The measured branching ratio of the Λ\(^0_b\)→ψ(2S)Λ\(^0\) and Λ\(^0_b\)→J/ψΛ\(^0\) decays is Γ(Λ\(^0_b\)→ψ(2S)Λ\(^0\))/Γ(Λ\(^0_b\)→J/ψΛ\(^0\))=0.501±0.033(stat)±0.019(syst), lower than the expectation from the covariant quark model.}, language = {en} } @article{HeStolteBurschkaetal.2015, author = {He, Tao and Stolte, Matthias and Burschka, Christian and Hansen, Nis Hauke and Musiol, Thomas and K{\"a}lblein, Daniel and Pflaum, Jens and Tao, Xutang and Brill, Jochen and W{\"u}rthner, Frank}, title = {Single-crystal field-effect transistors of new Cl\(_{2}\)-NDI polymorph processed by sublimation in air}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {5954}, doi = {10.1038/ncomms6954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149255}, year = {2015}, abstract = {Physical properties of active materials built up from small molecules are dictated by their molecular packing in the solid state. Here we demonstrate for the first time the growth of n-channel single-crystal field-effect transistors and organic thin-film transistors by sublimation of 2,6-dichloro-naphthalene diimide in air. Under these conditions, a new polymorph with two-dimensional brick-wall packing mode (\(\beta\)-phase) is obtained that is distinguished from the previously reported herringbone packing motif obtained from solution (\(\alpha\)-phase). We are able to fabricate single-crystal field-effect transistors with electron mobilities in air of up to 8.6 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\alpha\)-phase) and up to 3.5 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\beta\)-phase) on n-octadecyltriethoxysilane-modified substrates. On silicon dioxide, thin-film devices based on \(\beta\)-phase can be manufactured in air giving rise to electron mobilities of 0.37 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\). The simple crystal and thin-film growth procedures by sublimation under ambient conditions avoid elaborate substrate modifications and costly vacuum equipment-based fabrication steps.}, language = {en} } @article{Redelbach2015, author = {Redelbach, Andreas}, title = {Searches for prompt R-parity-violating supersymmetry at the LHC}, series = {Advances in High Energy Physics}, volume = {2015}, journal = {Advances in High Energy Physics}, number = {982167}, doi = {10.1155/2015/982167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149149}, year = {2015}, abstract = {Searches for supersymmetry (SUSY) at the LHC frequently assume the conservation of R-parity in their design, optimization, and interpretation. In the case that R-parity is not conserved, constraints on SUSY particle masses tend to be weakened with respect to R-parity-conserving models. We review the current status of searches for R-parity-violating (RPV) supersymmetry models at the ATLAS and CMS experiments, limited to 8 TeV search results published or submitted for publication as of the end of March 2015. All forms of renormalisable RPV terms leading to prompt signatures have been considered in the set of analyses under review. Discussing results for searches for prompt R-parity-violating SUSY signatures summarizes the main constraints for various RPV models from LHC Run I and also defines the basis for promising signal regions to be optimized for Run II. In addition to identifying highly constrained regions from existing searches, also gaps in the coverage of the parameter space of RPV SUSY are outlined.}, language = {en} } @article{HillStritzkerScadengetal.2011, author = {Hill, Philip J. and Stritzker, Jochen and Scadeng, Miriam and Geissinger, Ulrike and Haddad, Daniel and Basse-L{\"u}sebrink, Thomas C. and Gbureck, Uwe and Jakob, Peter and Szalay, Aladar A.}, title = {Magnetic Resonance Imaging of Tumors Colonized with Bacterial Ferritin-Expressing \(Escherichia\) \(coli\)}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0025409}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140920}, pages = {e25409}, year = {2011}, abstract = {Background: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties. Methods and Findings: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and which of the bacterial ferritins is the most suitable reporter. Bacterial ferritins were overexpressed in probiotic E. coli Nissle 1917. Cultures of these bacteria were analyzed and those generating highest MRI contrast were further investigated in tumor bearing mice. Among members of three classes of bacterial ferritin tested, bacterioferritin showed the most promise as a reporter gene. Although all three proteins accumulated similar amounts of iron when overexpressed individually, bacterioferritin showed the highest contrast change. By site-directed mutagenesis we also show that the heme iron, a unique part of the bacterioferritin molecule, is not critical for MRI contrast change. Tumor-specific induction of bacterioferritin-expression in colonized tumors resulted in contrast changes within the bacteria-colonized tumors. Conclusions: Our data suggest that colonization and gene expression by live vectors expressing bacterioferritin can be monitored by MRI due to contrast changes.}, language = {en} } @article{BorisjukRolletschekFuchsetal.2011, author = {Borisjuk, Ljudmilla and Rolletschek, Hardy and Fuchs, Johannes and Melkus, Gerd and Neuberger, Thomas}, title = {Low and High Field Magnetic Resonance for \(in\) \(Vivo\) Analysis of Seeds}, series = {Materials}, volume = {4}, journal = {Materials}, number = {8}, doi = {10.3390/ma4081426}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140910}, pages = {1426-1439}, year = {2011}, abstract = {Low field NMR has been successfully used for the evaluation of seed composition and quality, but largely only in crop species. We show here that 1.5T NMR provides a reliable means for analysing the seed lipid fraction present in a wide range of species, where both the seed size and lipid concentration differed by >10 fold. Little use of high field NMR has been made in seed research to date, even though it potentially offers many opportunities for studying seed development, metabolism and storage. Here we demonstrate how 17.5T and 20T NMR can be applied to image seed structure, and analyse lipid and metabolite distribution. We suggest that further technical developments in NMR/MRI will facilitate significant advances in our understanding of seed biology.}, language = {en} } @article{SauerWiessnerSchoelletal.2015, author = {Sauer, C and Wießner, M and Sch{\"o}ll, A and Reinert, F}, title = {Observation of a molecule-metal interface charge transfer related feature by resonant photoelectron spectroscopy}, series = {New Journal of Physics}, volume = {17}, journal = {New Journal of Physics}, number = {043016}, doi = {10.1088/1367-2630/17/4/043016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148672}, year = {2015}, abstract = {We report the discovery of a charge transfer (CT) related low binding energy feature at a molecule-metal interface by the application of resonant photoelectron spectroscopy (RPES). This interface feature is neither present for molecular bulk samples nor for the clean substrate. A detailed analysis of the spectroscopic signature of the low binding energy feature shows characteristics of electronic interaction not found in other electron spectroscopic techniques. Within a cluster model description this feature is assigned to a particular eigenstate of the photoionized system that is invisible in direct photoelectron spectroscopy but revealed in RPES through a relative resonant enhancement. Interpretations based on considering only the predominant character of the eigenstates explain the low binding energy feature by an occupied lowest unoccupied molecular orbital, which is either realized through CT in the ground or in the intermediate state. This reveals that molecule-metal CT is responsible for this feature. Consequently, our study demonstrates the sensitivity of RPES to electronic interactions and constitutes a new way to investigate CT at molecule-metal interfaces.}, language = {en} } @article{FuchsStenderTrupkeetal.2015, author = {Fuchs, F. and Stender, B. and Trupke, M. and Simin, D. and Pflaum, J. and Dyakonov, V. and Astakhov, G.V.}, title = {Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7578}, doi = {10.1038/ncomms8578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148502}, year = {2015}, abstract = {Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.}, language = {en} } @article{SessiSilkinNechaevetal.2015, author = {Sessi, Paolo and Silkin, Vyacheslav M. and Nechaev, Ilya A. and Bathon, Thomas and El-Kareh, Lydia and Chulkov, Evgueni V. and Echenique, Pedro M. and Bode, Matthias}, title = {Direct observation of many-body charge density oscillations in a two-dimensional electron gas}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8691}, doi = {10.1038/ncomms9691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145246}, year = {2015}, abstract = {Quantum interference is a striking manifestation of one of the basic concepts of quantum mechanics: the particle-wave duality. A spectacular visualization of this effect is the standing wave pattern produced by elastic scattering of surface electrons around defects, which corresponds to a modulation of the electronic local density of states and can be imaged using a scanning tunnelling microscope. To date, quantum-interference measurements were mainly interpreted in terms of interfering electrons or holes of the underlying band-structure description. Here, by imaging energy-dependent standing-wave patterns at noble metal surfaces, we reveal, in addition to the conventional surface-state band, the existence of an 'anomalous' energy band with a well-defined dispersion. Its origin is explained by the presence of a satellite in the structure of the many-body spectral function, which is related to the acoustic surface plasmon. Visualizing the corresponding charge oscillations provides thus direct access to many-body interactions at the atomic scale.}, language = {en} }