@phdthesis{Porsch2002, author = {Porsch, Matthias}, title = {OMB and ORG-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3614}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Members of the T-box gene family encode transcription factors that play key roles during embryonic development and organogenesis of invertebrates and vertebrates. The defining feature of T-box proteins is an about 200 aa large, conserved DNA binding motif, the T domain. Their importance for proper development is highlighted by the dramatic phenotypes of T-box mutant animals. My thesis was mainly focused on two Drosophila T-box genes, optomotor-blind (omb) and optomotor-blind related 1 (org-1), and included (i) a genetic analysis of org-1 and (ii) the identification of molecular determinants within OMB and ORG-1 that confer functional specificity. (i) Genetic analysis of org-1 initially based on a behavioral Drosophila mutant, C31. C31 is a X-linked, recessive mutant and was mapped to 7E-F, the cytological region of org-1. This pleiotropic mutant is manifested in walking defects, structural aberrations in the central brain, and "held-out" wings. Molecular analysis revealed that C31 contains an insertion of a 5' truncated I retrotransposon within the 3' untranslated transcript of org-1, suggesting that C31 might represent the first org-1 mutant. Based on this hypothesis, we screened 44.500 F1 female offspring of EMS mutagenized males and C31 females for the "held-out" phenotype, but failed to isolate any C31 or org-1 mutant, although this mutagenesis was functional per se. Since we could not exclude the possibility that our failure is due to an idiosyncracy of C31, we intended not to rely on C31 in further genetic experiments and followed a reverse genetic strategy . All P element lines cytologically mapping to 7E-7F were characterized for their precise insertion sites. 13 of the 19 analyzed lines had P element insertions within a hot-spot 37 kb downstream of org-1. No P element insertions within org-1 could be identified, but several P element insertions were determined on either side of org-1. The org-1 nearest insertions were used for local-hop experiments, in which we associated 6 new genes with P insertions, but failed to target org-1. The closest P elements are still 10 kb away from org-1. Subsequently, we employed org-1 flanking P elements to induce precise deletions in 7E-F spanning org-1. Two org-1 flanking P elements were brought together on a recombinant chromosome. Remobilization of P elements in cis configuration frequently results in deletions with the P element insertion sites as deficiency endpoints. In a first attempt, we expected to identify deficiencies by screening for C31 alleles. 8 new C31 alleles could be isolated. The new C31 chromosomes, however, did not carry the desired deletion. Molecular analysis indicated that C31 is not caused by aberrations in org-1, but by mutations in a distal locus. We repeated the P element remobilization and screened for the absence of P element markers. 4 lethal chromosomes could be isolated with a deletion of the org-1 locus. (ii) The consequences of ectopic org-1 were analyzed using UAS-org-1 transgenic flies and a number of different Gal4 driver lines. Misexpression of org-1 during imaginal development interfered with the normal development of many organs and resulted in flies with a plethora of phenotypes. These include a homeotic transformation of distal antenna (flagellum) into distal leg structures, a strong size reduction of the legs along their proximo-distal axis, and stunted wings. Like ectopic org-1, ectopic omb leads to dramatic changes of normal developmental pathways in Drosophila as well. dpp-Gal4/ UAS-omb flies are late pupal lethal and show an ectopic pair of wings and largely reduced eyes. GMR-Gal4 driven ectopic omb expression in the developing eye causes a degeneration of the photoreceptor cells, while GMR-Gal4/ UAS-org-1 flies have intact eyes. Hence, ectopic org-1 and omb induce profound phenotypes that are qualitatively different for these homologous genes. To begin to address the question where within OMB and ORG-1 the specificity determinants reside, we conceptionally subdivided both proteins into three domains and tested the relevance ofthese domains for functional specificity in vivo. The single domains were cloned and used as modules to assemble all possible omb-org-1 chimeric trans- genes. A method was developed to determine the relative expression strength of different UAS-transgenes, allowing to compare the various transgenic constructs for qualitative differences only, excluding different transgene quantities. Analysis of chimeric omb-org-1 transgenes with the GMR-Gal4 driver revealed that all three OMB domains contribute to functional specificity.}, subject = {Taufliege}, language = {en} } @phdthesis{Thom2002, author = {Thom, Corinna}, title = {Dynamics and Communication Structures of Nectar Foraging in Honey Bees (Apis mellifera)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {In this thesis, I examined honey bee nectar foraging with emphasis on the communication system. To document how a honey bee colony adjusts its daily nectar foraging effort, I observed a random sample of individually marked workers during the entire day, and then estimated the number and activity of all nectar foragers in the colony. The total number of active nectar foragers in a colony changed frequently between days. Foraging activity did not usually change between days. A honey bee colony adjusts its daily foraging effort by changing the number of its nectar foragers rather than their activity. I tested whether volatiles produced by a foraging colony activated nectar foragers of a non-foraging colony by connecting with a glass tube two colonies. Each colony had access to a different green house. In 50\% of all experiments, volatile substances from the foraging colony stimulated nectar foragers of the non-foraging colony to fly to an empty feeder. The results of this study show that honey bees can produce a chemical signal or cue that activates nectar foragers. However, more experiments are needed to establish the significance of the activating volatiles for the foraging communication system. The brief piping signal of nectar foragers inhibits forager recruitment by stopping waggle dances (Nieh 1993, Kirchner 1993). However, I observed that many piping signals (approximately 43\%) were produced off the dance floor, a restricted area in the hive where most waggle dances are performed. If the inhibition of waggle dances would be the only function of the brief piping signal, tremble dancers should produce piping signals mainly on the dance floor, where the probability to encounter waggle dancers is highest. To therefore investigate the piping signal in more detail, I experimentally established the foraging context of the brief piping signal, characterized its acoustic properties, and documented for the first time the unique behavior of piping nectar foragers by observing foragers throughout their entire stay in the hive. Piping nectar foragers usually began to tremble dance immediately upon their return into the hive, spent more time in the hive, more time dancing, had longer unloading latencies, and were the only foragers that sometimes unloaded their nectar directly into cells instead of giving it to a nectar receiver bee. Most of the brief piping signals (approximately 99\%) were produced by tremble dancers, yet not all tremble dancers (approximately 48\%) piped. This suggests that piping and tremble dancing have related, but not identical functions in the foraging system. Thus, the brief piping signals may not only inhibit forager recruitment, but have an additional function both on and off the dance floor. In particular, the piping signal might function 1. to stop the recruitment of additional nectar foragers, and 2. as a modulatory signal to alter the response threshold of signal receivers to the tremble dance. The observation that piping tremble dancers often did not experience long unloading delays before they started to dance gave rise to a question. A forager's unloading delay provides reliable information about the relative work capacities of nectar foragers and nectar receivers, because each returning forager unloads her nectar to a nectar receiver before she takes off for the next foraging trip. Queuing delays for either foragers or receivers lower foraging efficiency and can be eliminated by recruiting workers to the group in shortage. Short unloading delays indicate to the nectar forager a shortage of foragers and stimulate waggle dancing which recruits nectar foragers. Long unloading delays indicate a shortage of nectar receivers and stimulate tremble dancing which recruits nectar receivers (Seeley 1992, Seeley et al. 1996). Because the short unloading delays of piping tremble dancers indicated that tremble dancing can be elicited by other factors than long unloading delays, I tested whether a hive-external stimulus, the density of foragers at the food source, stimulated tremble dancing directly. The experiments show that tremble dancing can be caused directly by a high density of foragers at the food source and suggest that tremble dancing can be elicited by a decrease of foraging efficiency either inside (e.g. shortage of receiver bees) or outside (e.g. difficulty of loading nectar) the hive. Tremble dancing as a reaction to hive-external stimuli seems to occur under natural conditions and can thus be expected to have some adaptive significance. The results imply that if the hive-external factors that elicit tremble dancing do not indicate a shortage of nectar receiver bees in the hive, the function of the tremble dance may not be restricted to the recruitment of additional nectar receivers, but might be the inhibition or re-organization of nectar foraging.}, subject = {Bienen }, language = {en} } @phdthesis{Jadulco2002, author = {Jadulco, Raquel C.}, title = {Isolation and structure elucidation of bioactive secondary metabolites from marine sponges and sponge-derived fungi}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3565}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Low-molecular mass natural products from bacteria, fungi, plants and marine organisms exhibit unique structural diversity which are of interest for the identification of new lead structures for medicinals and agrochemicals. In the search for bioactive compounds from marine sponges and sponge-associated fungi, this research work resulted to the isolation of twenty-six compounds, eight of which are new metabolites. The sponges were collected from the Indo-pacific regions, particularly those from Indonesian and Philippine waters, as well as those from the Mediterranean Sea near the island of Elba in Italy. A combination of the chemically- and biologically-driven approach for drug discovery was employed, wherein extracts were screened for antibacterial, antifungal and cytotoxic activities. In addition to the bioassay-guided approach to purify the compounds responsible for the activity of the extract, TLC, UV and MS were also used to isolate the chemically most interesting substances. Hence, purified compounds which are not responsible for the initial bioscreening activity may have a chance to be evaluated for other bioactivities. Enumerated below are the compounds which have been isolated and structurally elucidated and whose bioactivities have been further characterized. 1. The extract of the fungus Cladosporium herbarum associated with the sponge Callyspongia aerizusa afforded seven structurally related polyketides, including two new twelve-membered macrolides: pandangolide 3 and 4, and a new acetyl congener of the previously isolated 5-hydroxymethyl-2-furoic acid. The two furoic acid analogues isolated were found to be responsible for the antimicrobial activity of the extract. The isolation of the known phytotoxin Cladospolide B from Cladosporium herbarum, which was originally known from Cladosporium cladosporioides and C. tenuissimum, indicates the possibility that Cladospolide B may be a chemotaxonomic marker of particular Cladosporium species. 2. The extract of the fungus Curvularia lunata associated with the Indonesian sponge Niphates olemda yielded three compounds, namely the new antimicrobially-active anthraquinone lunatin, the known bisanthraquinone cytoskyrin A, and the known plant hormone abscisic acid. The co-occurrence of the two structurally-related anthraquinones suggests that the monomeric lunatin may be a precursor in the biosynthesis of the bisanthraquinone cytoskyrin A. 3. The fungus Penicillium spp. associated with the Mediterranean sponge Axinella verrucosa yielded six compounds, namely the known antifungal griseofulvin and its less active dechloro analogue; the known toxin oxaline; and the known cytotoxic metabolite communesin B and its two new congeners communesin C and D. The new communesins were less active than communesin B in the brine-shrimp lethality test. 4. An unidentified fungus which was also isolated from the same Mediterranean sponge Axinella verrucosa as Penicillium spp. yielded the known compound monocerin which has been reported to possess phytotoxic and insecticidal activities. 5. The fungus Aspergillus flavus associated with the Philippine sponge Hyrtios aff. reticulatus yielded the known toxin a-cyclopiazonic acid. 6. The Indonesian sponge Agelas nakamurai yielded four bromopyrrole alkaloids namely the new compound 4-bromo-pyrrole-2-carboxylic acid, and the known compounds: 4-bromo-pyrrole-2-carboxamide, mukanadin B and mukanadin C. All of the four compounds except mukanadin B were found to be antimicrobially-active. Bromopyrrole alkaloids are well-known metabolites of the genus Agelas and are proven to play an important role in the chemical defense of the sponge against predation from fishes. 7. The Indonesian sponge Jaspis splendens yielded three known substances which are known for their antiproliferative activities, namely the depsipeptides jaspamide (jasplakinolide), and its derivatives jaspamide B and jaspamide C.}, subject = {Meeresschw{\"a}mme}, language = {en} } @phdthesis{Stoimenova2002, author = {Stoimenova, Maria}, title = {Normoxic and anoxic metabolism of Nicotiana tabacum transformants lacking root nitrate reductase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3498}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {The aim of this work was to find out whether and how nitrate reduction in roots would facilitate survival of hypoxic and anoxic (flooding)-phases. For that purpose, we compared the response of roots of hydroponically grown tobacco wildtype (Nicotiana tabacum cv. Gatersleben) and of a transformant (LNR-H) with no nitrate reductase (NR) in the roots but almost normal NR in leaves (based on a nia2-double mutant). As an additional control we used occasionally a 35S-transformant of the same nia2-double mutant, which on the same genetic background constitutively expressed NR in all organs. In some cases, we also compared the response of roots from WT plants, which had been grown on tungstate for some time in order to completely suppress NR activity. The following root parameters were examined: 1) Growth and morphology 2) Root respiration rates and leaf transpiration 3) Metabolite contents in roots (ATP, hexosemonophosphates, free sugars, starch, amino acids, total protein) 4) Inorganic cation and anion contents 5) Lactate and ethanol production 6) Extractable LDH-and ADH-activities 7) Cytosolic pH values (by 31P-NMR) 8) NO Cation and anion contents of roots from WT and LNR-H were only slightly different, confirming that these plants would be better suited for our purposes than the widely used comparison of nitrate-versus ammonium-grown plants, which usually show up with dramatic differences in their ion contents. Normoxia: LNR-H-plants had shorter and thicker roots than WT with a lower roots surface area per leaf FW. This was probably the major cause for the significantly lower specific leaf transpiration of LNR-H. WT-roots had lower respiration rates, lower ATP-and HMP-contents, slightly lower sugar- and starch contents and somewhat lower amino acid contents than LNR-H roots. However, total protein/FW was almost identical. Obviously the LNR-H transformants did not suffer from N-defciency, and their energy status appeared even better than that of WT-roots. Data from the 35S-transformant were similar to those of WT. This indicates that the observed differences between WT and LNR-H were not due to unknown factors of the genetic nia2-background, but that they could be really traced back to the presence resp. absence of nitrate reduction. Anoxia: Under short-term anoxia (2h) LNR-H plants, but not WT-plants exhibited clear symptoms of wilting, although leaf transpiration was lower with LNR-H. Reasons are not known yet. LNR-H roots produced much more ethanol (which was excreted) and lactate compared to WT, but extractable ADH and LDH activities, were not induced by anoxia. However, the LDH activity background was twice as high as that of the WT troughout the time period studied. Tungstate-treated WT-roots also gave higher fermentation rates than normal WT roots. Sugar- and HMP-contents remained higher in LNR-H roots than in WT. NR in WT roots was activated under anoxia and roots accumulated nitrite, which was also released to the medium. 31P-NMR spectroscopy showed that LNR-H- roots, in spite of their better energy status, acidified their cytosol more than WT roots. Conclusions: Obviously nitrate reduction affects - by as yet unknown mechanisms - root growth and morphology. The much lower anoxic fermentation rates of WT-roots compared to LNR-H roots could not be traced back to an alternative NADH consumption by nitrate reduction, since NR activity was too low for that. An overall estimation of H+-production by glycolysis, fermentation and nitrate reduction (without nitrite reduction, which was absent under anoxia) indicated that the stronger cytosolic acidification of anoxic LNR-H roots was based on their higher fermentation rates. Thus, nitrate reduction under anoxia appears advantageous because of lower fermentation rates and concomitantly lower cytosolic acidification. However, it remained unclear why fermentation rates were so different. Perspective: Preliminary experiments had indicated that WT-roots produced more nitric oxide (NO) under anoxia than LNR-H-roots. Accordingly, we suggest that nitrate reduction, beyond a merely increased NADH-consumption, would lead to advantageous changes in metabolism, eventually via NO-production, which is increasingly recognized as an important signaling compound regulating many plant functions.}, subject = {Tabak}, language = {en} } @phdthesis{Wolfrom2002, author = {Wolfrom, Martin}, title = {Isoparametric hypersurfaces with a homogeneous focal manifold}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3505}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {The classification of isoparametric hypersurfaces in spheres with a homogeneous focal manifold is a project that has been started by Linus Kramer. It extends results by E. Cartan and Hsiang and Lawson. Kramer does most part of this classification in his Habilitationsschrift. In particular he obtains a classification for the cases where the homogeneous focal manifold is at least 2-connected. Results of E. Cartan, Dorfmeister and Neher, and Takagi also solve parts of the classification problem. This thesis completes the classification. We classify all closed isoparametric hypersurfaces in spheres with g>2 distinct principal curvatures one of whose multiplicities is 2 such that the lower dimensional focal manifold is homogeneous. The methods are essentially the same as in Kramer's 'Habilitationsschrift'. The cohomology of the focal manifolds in question is known. This leads to two topological classification problems, which are also solved in this thesis. We classify simply connected homogeneous spaces of compact Lie groups with the same integral cohomology ring as a product of spheres S^2 x S^m and m odd on the one hand and a truncated polynomial ring Q[a]/(a^m) with one generator of even degree and m > 1 as its rational cohomology ring on the other hand.}, subject = {Isoparametrische Hyperfl{\"a}che}, language = {en} } @phdthesis{Dornhaus2002, author = {Dornhaus, Anna}, title = {The role of communication in the foraging process of social bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3468}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {In the various groups of social bees, different systems of communication about food sources occur. These communication systems are different solutions to a common problem of social insects: efficiently allocating the necessary number of workers first to the task of foraging and second to the most profitable food sources. The solution chosen by each species depends on the particular ecological circumstances as well as the evolutionary history of that species. For example, the outstanding difference between the bumble bee and the honey bee system is that honey bees can communicate the location of profitable food sources to nestmates, which bumble bees cannot. To identify possible selection pressures that could explain this difference, I have quantified the benefits of communicating location in honey bees. I show that these strongly depend on the habitat, and that communicating location might not benefit bees in temperate habitats. This could be due to the differing spatial distributions of resources in different habitats, in particular between temperate and tropical regions. These distributions may be the reason why the mostly temperate-living bumble bees have never evolved a communication system that allows them to transfer information on location of food sources, whereas most tropical social bees (all honey bees and many stingless bees) are able to recruit nestmates to specific points in their foraging range. Nevertheless, I show that in bumble bees the allocation of workers to foraging is also regulated by communication. Successful foragers distribute in the nest a pheromone which alerts other bees to the presence of food. This pheromone stems from a tergite gland, the function of which had not been identified previously. Usage of a pheromone in the nest to alert other individuals to forage has not been described in other social insects, and might constitute a new mode of communicating about food sources. The signal might be modulated depending on the quality of the food source. Bees in the nest sample the nectar that has been brought into the nest. Their decision whether to go out and forage depends not only on the pheromone signal, but also on the quality of the nectar they have sampled. In this way, foraging activity of a bumble bee colony is adjusted to foraging conditions, which means most bees are allocated to foraging only if high-quality food sources are available. In addition, foraging activity is adjusted to the amount of food already stored. In a colony with full honeypots, no new bees are allocated to foraging. These results help us understand how the allocation of workers to the task of food collection is regulated according to external and internal nest conditions in bumble bees.}, subject = {Hummel}, language = {en} } @phdthesis{Leusser2002, author = {Leußer, Dirk}, title = {S=N versus S+-N-}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3437}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {The main aim of this thesis was to characterise structurally four sulfur-nitrogen compounds in terms of their experimental electron density distribution: Sulfurdiimide S(NtBu)2 (I), sulfurtriimide S(NtBu)3 (II), methyl(diimido)sulfinic acid H(NtBu)2SMe (III) and methylene-bis(triimido)sulfonic acid CH2{S(NtBu)2(HNtBu)}2 (IV). The electron density was determined by multipole refinements on high-resolution X-ray data at low temperatures. The refined densities were analysed by means of Bader's theory of 'Atoms in Molecules' to get information about the bonding types (shared/ closed shell), bond strengths, and the extent of polarisation. The distributions of the static deformation densities, which already showed the most important electronical features as lone-pairs and bonding densities, were calculated for all compounds. The spatial distributions provided a first impression about the bonding properties. The nitrogen lone-pair densities were found to be inclined towards the electropositive sulfur atoms. In II, III and IV the spatial distributions already suggested sp3 hybridisation of the nitrogen atoms. In I gradual differences between the E/Z and Z/Z oriented NtBu groups were visualised. The charge density distribution was analysed along the bond paths, which showed some of the S,N bonds to be considerably bent. In the central part of the thesis detailed topological analyses of the electron density distributions were performed. All BCPs and the related electronical properties as the electron density, the negative Laplacian, the eigenvalues of the Hessian matrix, and several values, which can be deduced from these, were calculated. Due to the low number of comparable published compounds, internal scaling facilitated by III and IV led to system-specific ranking of the S-N and S-C bonds in terms of bond type (shared vs. closed shell), bond order, and bond strength. To quantify bond polarisation a criterion was developed which relates shifts in the BCPs to electron transfer from the electropositive to the electronegative bonding partner. The distributions of the Laplacian were determined for all S-E (E = N, C) bonds because of their fundamental importance for the classification of atomic interactions. Furthermore, the spatial distribution of the negative Laplacian with respect to all important bonds was determined around the central sulfur and nitrogen atoms. The analyses led to detailed information about the S,N interactions. A calculation of the reactive surfaces where the Laplacian equals zero revealed possible reaction pathways of nucleophilic attacks to the central sulfur atoms. All nitrogen atoms in H(NtBu)2SMe (III) as well as in CH2{S(NtBu)2(HNtBu)}2 (IV) are predominantly sp3 hybridised. The S,N bonds should therefore be formulated as S+-N- single bonds, strengthened and shortened by electrostatic reinforcement. In S(NtBu)2 (I) the sp2 hybridisation of the nitrogen atoms was verified. All topological criteria unearthed the inequality of the formally equivalent S=N double bonds. The differences were assigned to the molecular E/Z conformation in the solid state. Interaction between the in-plane lone-pair density of the nitrogen and the sulfur atom located at the same side causes the non-bonding charge concentration at the sulfur atom to be dislocated into the second S-N bond. The existence of a delocalised 3-centres-2-electrons system within the planar SN2 core was assumed to be formed by non-hybridised p-orbitals. An effective delocalisation was found to be possibly disturbed by a weak intermolecular S...S interaction. The interpretation of the S,N interaction in S(NtBu)3 (II) was not straightforward, since the electron density distribution showed both, indicators for multiple bonding as well as for sp3 hybridisation of the nitrogen atoms, which verifies the formulation of a S+-N- bonding mode. The bonding situation in S(NtBu)3 was identified as an intermediate state between that of a delocalised 4-centres-6-electrons system formed by non-hybridised p-orbitals within the planar SN3 unit and that of a S+-N- system.}, subject = {Schwefelverbindungen}, language = {en} } @phdthesis{Kuells2000, author = {K{\"u}lls, Christoph}, title = {Groundwater of the North-Western Kalahari, Namibia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1180680}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {A quantitative model of groundwater flows contributing to the Goblenz state water scheme at the north-western fringe of the Kalahari was developed within this study. The investigated area corresponds to the Upper Omatako basin and encompasses an outer mountainous rim and sediments of the Kalahari sand desert in the centre. This study revealed the eminent importance of the mountainous rim for the water balance of the Kalahari, both in terms of surface and ground water. A hydrochemical subdivision of groundwater types in the mountain rim around the Kalahari was derived from cluster analysis of hydrochemical groundwater data. The western and south-western secondary aquifers within rocks of the Damara Sequence, the Otavi Mountain karst aquifers of the Tsumeb and Abenab subgroups as well as the Waterberg Etjo sandstone aquifer represent the major hydrochemical groups. Ca/Mg and Sr/Ca ratios allowed to trace the groundwater flow from the Otavi Mountains towards the Kalahari near Goblenz. The Otavi Mountains and the Waterberg were identified as the main recharge areas showing almost no or only little isotopic enrichment by evaporation. Soil water balance modelling confirmed that direct groundwater recharge in hard-rock environments tends to be much higher than in areas covered with thick Kalahari sediments. According to the water balance model average recharge rates in hard-rock exposures with only thin sand cover are between 0.1 and 2.5 \% of mean annual rainfall. Within the Kalahari itself very limited recharge was predicted (< 1 \% of mean annual rainfall). In the Upper Omatako basin the highest recharge probability was found in February in the late rainfall season. The water balance model also indicated that surface runoff is produced sporadically, triggering indirect recharge events. Several sinkholes were discovered in the Otavi Foreland to the north of Goblenz forming short-cuts to the groundwater table and preferential recharge zones. Their relevance for the generation of indirect recharge could be demonstrated by stable isotope variations resulting from observed flood events. Within the Kalahari basin several troughs were identified in the pre-Kalahari surface by GIS-based analyses. A map of saturated thickness of Kalahari sediments revealed that these major troughs are partly saturated with groundwater. The main trough, extending from south-west to north-east, is probably connected to the Goblenz state water scheme and represents a major zone of groundwater confluence, receiving groundwater inflows from several recharge areas in the Upper Omatako basin. As a result of the dominance of mountain front recharge the groundwater of the Kalahari carries an isotopic composition of recharge at higher altitudes. The respective percentages of inflow into the Kalahari from different source areas were determined by a mixing-cell approach. According to the mixing model Goblenz receives most of its inflow (70 to 80 \%) from a shallow Kalahari aquifer in the Otavi Foreland which is connected to the Otavi Mountains. Another 15 to 10 \% of groundwater inflow to the Kalahari at Goblenz derive from the Etjo sandstone aquifer to the south and from inflow of a mixed component. In conclusion, groundwater abstraction at Goblenz will be affected by measures that heavily influence groundwater inflow from the Otavi Mountains, the Waterberg, and the fractured aquifer north of the Waterberg.}, subject = {Kalahari}, language = {en} } @phdthesis{Wanke2000, author = {Wanke, Ansgar}, title = {Karoo-Etendeka Unconformities in NW Namibia and their Tectonic Implications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3234}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {In north-western Namibia the fills of the Karoo-Etendeka depositories can be subdivided into (1) a Carboniferous-Permian, (2) a Triassic-Jurassic and (3) a Cretaceous megasequence, each recording extensional periods related to successive rifting phases in the evolving South Atlantic. The tectonic environment of the depositories in north-western Namibia changes successively from the coast towards the continental interior, which is reflected by the facies distribution and the position of time-stratigraphic gaps. Close to the present-day coastline synsedimentary listric faults, trending parallel to the South Atlantic rift (N-S), caused the formation of wedge shaped sediment bodies. Here, the Karoo Supergroup is only represented by the Permian succession in the Huab area. A hiatus within the Permian can be recognised by the correlation with the main Karoo Basin in South Africa and the Brazilian Paran{\´a} Basin. This stratal gap correlates with a pre-Beaufort Group unconformity in the main Karoo Basin that might be related to an orogenic pulse in the Cape Fold Belt. The Permian succession itself is unconformably overlain by the Lower Cretaceous Etendeka Group. This hiatus extending from the Upper Permian to the Lower Cretaceous has probably been induced by a combination of rift shoulder uplift and additional crustal doming associated with Etendeka flood volcanism. The enhanced tectonism during the Early Cretaceous controlled accommodation space for the alluvial-fluvial and aeolian deposits of the lower Etendeka Group. Disconformities within those deposits and the overlying lava succession attribute to distinct phases of tectonic and volcanic activity heralding the South Atlantic breakup. Towards the south-east, the Karoo succession becomes successively more complete. In the vicinity of Mt. Brandberg Early Triassic strata (Middle Omingonde Formation) follow disconformably above the Upper Permian/Lowermost Triassic Doros Formation. The sedimentation there was essentially controlled by the SW-NE trending Damaraland Uplift. South of the Damaraland Uplift the SW-NE trending Waterberg-Omaruru Fault zone is interpreted as a sinistral oblique-slip fault that compartmentalised the South Atlantic rift. This fault controlled accommodation space of the entire Triassic Omingonde Formation and the Early Jurassic Etjo Formation in its associated pull-apart and transtension structures. A locally well developed angular unconformity defines a hiatus between the two formations. Correlation with the main Karoo Basin in South Africa confirms that this gap is of a regional extent and not only a local, fault induced feature. Furthermore, it might also correlate with an orogenic pulse of the Cape Fold Belt. In general, the Mesozoic megasequences record the long-lived history of the southern Atlantic rift evolution. Rifting has been controlled by orogenic pulses derived from the Samfrau active margin throughout the Mesozoic. The associated intracratonic E-W extension caused the formation of grabens and conjugated oblique-slip zones. The generation of voluminous flood basalts marks the climax of intracratonic extension that was accompanied by enhanced uplift of the rift shoulders.}, subject = {Namibia }, language = {en} } @phdthesis{Wietek2001, author = {Wietek, Irina}, title = {Human Interleukin-4 binding protein epitope involved in high-affinity binding of interleukin-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3190}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {No abstract available}, subject = {Mensch}, language = {en} }