@article{OPUS4-13986, title = {Search for s-channel single top-quark production in proton-proton collisions at \(\sqrt{s}\)=8 TeV with the ATLAS detector}, series = {Physics Letters B}, volume = {740}, journal = {Physics Letters B}, organization = {ATLAS Collaboration}, doi = {10.1016/j.physletb.2014.11.042}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139869}, pages = {118-136}, year = {2015}, abstract = {This Letter presents a search at the LHC for s-channel single top-quark production in proton-proton collisions at a centre-of-mass energy of 8 TeV. The analyzed data set was recorded by the ATLAS detector and corresponds to an integrated luminosity of 20.3 fb\(^{-1}\). Selected events contain one charged lepton, large missing transverse momentum and exactly two b-tagged jets. A multivariate event classifier based on boosted decision trees is developed to discriminate s-channel single top-quark events from the main background contributions. The signal extraction is based on a binned maximum-likelihood fit of the output classifier distribution. The analysis leads to an upper limit on the s-channel single top-quark production cross-section of 14.6 pb at the 95\% confidence level. The fit gives a cross-section of σs=5.0±4.3 pb, consistent with the Standard Model expectation.}, language = {en} } @article{OPUS4-13985, title = {Centrality and rapidity dependence of inclusive jet production in \(\sqrt{^SNN}\)=5.02 TeV proton-lead collisions with the ATLAS detector}, series = {Physics Letters B}, volume = {748}, journal = {Physics Letters B}, organization = {ATLAS Collaboration}, doi = {10.1016/j.physletb.2015.07.023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139857}, pages = {392-413}, year = {2015}, abstract = {Measurements of the centrality and rapidity dependence of inclusive jet production in \(\sqrt{^SNN}\)=5.02 TeV proton-lead (p+Pb) collisions and the jet cross-section in \(\sqrt{s}\)=2.76 TeV proton-proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb\(^{-1}\) and 4.0 pb\(^{-1}\), respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The p+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval -4.9<η<-3.2 in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum (\(p_T\)) for minimum-bias and centrality-selected p+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a \(p_T\)-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all \(p_T\) at forward rapidities and for large \(p_T\) at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics.}, language = {en} } @article{DyksikMotykaSęketal.2015, author = {Dyksik, Mateusz and Motyka, Marcin and Sęk, Grzegorz and Misiewicz, Jan and Dallner, Matthias and Weih, Robert and Kamp, Martin and H{\"o}fling, Sven}, title = {Submonolayer Uniformity of Type II InAs/GaInSb W-shaped Quantum Wells Probed by Full-Wafer Photoluminescence Mapping in the Mid-infrared Spectral Range}, series = {Nanoscale Research Letters}, volume = {10}, journal = {Nanoscale Research Letters}, number = {402}, doi = {10.1186/s11671-015-1104-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139733}, year = {2015}, abstract = {The spatial uniformity of GaSb- and InAs substrate-based structures containing type II quantum wells was probed by means of large-scale photoluminescence (PL) mapping realized utilizing a Fourier transform infrared spectrometer. The active region was designed and grown in a form of a W-shaped structure with InAs and GaInSb layers for confinement of electrons and holes, respectively. The PL spectra were recorded over the entire 2-in. wafers, and the parameters extracted from each spectrum, such as PL peak energy position, its linewidth and integrated intensity, were collected in a form of two-dimensional spatial maps. Throughout the analysis of these maps, the wafers' homogeneity and precision of the growth procedure were investigated. A very small variation of PL peak energy over the wafer indicates InAs quantum well width fluctuation of only a fraction of a monolayer and hence extraordinary thickness accuracy, a conclusion further supported by high uniformity of both the emission intensity and PL linewidth.}, language = {en} } @article{YuNatarajanHorikirietal.2015, author = {Yu, Leo and Natarajan, Chandra M. and Horikiri, Tomoyuki and Langrock, Carsten and Pelc, Jason S. and Tanner, Michael G. and Abe, Eisuke and Maier, Sebastian and Schneider, Christian and H{\"o}fling, Sven and Kamp, Martin and Hadfield, Robert H. and Fejer, Martin M. and Yamamoto, Yoshihisa}, title = {Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, doi = {10.1038/ncomms9955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138677}, pages = {8955}, year = {2015}, abstract = {Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.}, language = {en} } @article{KurzKampfBuschleetal.2015, author = {Kurz, Felix T. and Kampf, Thomas and Buschle, Lukas R. and Schlemmer, Heinz-Peter and Heiland, Sabine and Bendszus, Martin and Ziener, Christian H.}, title = {Microstructural Analysis of Peripheral Lung Tissue through CPMG Inter-Echo Time R2 Dispersion}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0141894}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138345}, pages = {e0141894}, year = {2015}, abstract = {Since changes in lung microstructure are important indicators for (early stage) lung pathology, there is a need for quantifiable information of diagnostically challenging cases in a clinical setting, e.g. to evaluate early emphysematous changes in peripheral lung tissue. Considering alveoli as spherical air-spaces surrounded by a thin film of lung tissue allows deriving an expression for Carr-Purcell-Meiboom-Gill transverse relaxation rates R-2 with a dependence on inter-echo time, local air-tissue volume fraction, diffusion coefficient and alveolar diameter, within a weak field approximation. The model relaxation rate exhibits the same hyperbolic tangent dependency as seen in the Luz-Meiboom model and limiting cases agree with Brooks et al. and Jensen et al. In addition, the model is tested against experimental data for passively deflated rat lungs: the resulting mean alveolar radius of RA = 31.46 \(\pm\) 13.15 \(\mu\)m is very close to the literature value (similar to 34 \(\mu\)m). Also, modeled radii obtained from relaxometer measurements of ageing hydrogel foam (that mimics peripheral lung tissue) are in good agreement with those obtained from mu CT images of the same foam (mean relative error: 0.06 \(\pm\) 0.01). The model's ability to determine the alveolar radius and/or air volume fraction will be useful in quantifying peripheral lung microstructure.}, language = {en} } @article{OPUS4-13827, title = {Search for the \(X_b\) and other hidden-beauty states in the \(π^+π^-ϒ\)(1S) channel at ATLAS}, series = {Physics Letters B}, volume = {740}, journal = {Physics Letters B}, organization = {ATLAS Collaboration}, doi = {10.1016/j.physletb.2014.11.055}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138273}, pages = {199-217}, year = {2014}, abstract = {This Letter presents a search for a hidden-beauty counterpart of the X(3872) in the mass ranges of 10.05-10.31 GeV and 10.40-11.00 GeV, in the channel X\(_b\)→π\(^+\)π\(^-\)ϒ(1S)(→μ\(^+\)μ\(^-\)), using 16.2 fb\(^{-1}\) of s=8 TeV \(pp\) collision data collected by the ATLAS detector at the LHC. No evidence for new narrow states is found, and upper limits are set on the product of the X\(_b\) cross section and branching fraction, relative to those of the ϒ(2S), at the 95\% confidence level using the CLSCLS approach. These limits range from 0.8\% to 4.0\%, depending on mass. For masses above 10.1 GeV, the expected upper limits from this analysis are the most restrictive to date. Searches for production of the ϒ(1\(^3\)D\(_J\)), ϒ(10860), and ϒ(11020) states also reveal no significant signals.}, language = {en} } @article{OPUS4-13826, title = {Search for \(W′→t\overline {b}\) in the lepton plus jets final state in proton-proton collisions at a centre-of-mass energy of \(\sqrt {s}\)=8 TeV with the ATLAS detector}, series = {Physics Letters B}, volume = {743}, journal = {Physics Letters B}, organization = {ATLAS Collaboration}, doi = {10.1016/j.physletb.2015.02.051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138262}, pages = {235-255}, year = {2015}, abstract = {A search for new charged massive gauge bosons, called W′W′, is performed with the ATLAS detector at the LHC, in proton-proton collisions at a centre-of-mass energy of \(\sqrt {s}\)=8 TeV, using a dataset corresponding to an integrated luminosity of 20.3 fb\(^{-1}\). This analysis searches for W′W′ bosons in the \(W′→t\overline{b}\) decay channel in final states with electrons or muons, using a multivariate method based on boosted decision trees. The search covers masses between 0.5 and 3.0 TeV, for right-handed or left-handed W′W′ bosons. No significant deviation from the Standard Model expectation is observed and limits are set on the \(W′→t\overline{b}\) cross-section times branching ratio and on the W′W′-boson effective couplings as a function of the W′W′-boson mass using the CL\(_s\) procedure. For a left-handed (right-handed) W′W′ boson, masses below 1.70 (1.92) TeV are excluded at 95\% confidence level.}, language = {en} } @article{AadAbbottAbdallahetal.2012, author = {Aad, G. and Abbott, B. and Abdallah, J. and Abdelalim, A. A. and Abdesselam, A.}, title = {Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data}, series = {The European Physical Journal C}, volume = {72}, journal = {The European Physical Journal C}, number = {1909}, doi = {10.1140/epjc/s10052-012-1909-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127313}, year = {2012}, abstract = {Detailed measurements of the electron performance of the ATLAS detector at the LHC are reported, using decays of the Z, W and J/ψ particles. Data collected in 2010 at s√=7 TeV are used, corresponding to an integrated luminosity of almost 40 pb\(^{-1}\). The inter-alignment of the inner detector and the electromagnetic calorimeter, the determination of the electron energy scale and resolution, and the performance in terms of response uniformity and linearity are discussed. The electron identification, reconstruction and trigger efficiencies, as well as the charge misidentification probability, are also presented.}, language = {en} } @article{AadAbbottAbdallahetal.2012, author = {Aad, G. and Abbott, B. and Abdallah, J. and Abdel Khalek, S. and Abdelalim, A. A.}, title = {Search for the Standard Model Higgs boson in the H→WW(⋆)→ℓνℓνH→WW(⋆)→ℓνℓν decay mode with 4.7 fb\(^{-1}\) of ATLAS data at \(\sqrt{s}\)=7 TeV}, series = {Physics Letters B}, volume = {761}, journal = {Physics Letters B}, number = {1}, organization = {ATLAS Collaboration}, doi = {10.1016/j.physletb.2012.08.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127307}, pages = {62-81}, year = {2012}, abstract = {A search for the Standard Model Higgs boson in the H→WW(⋆)→ℓνℓνH→WW(⋆)→ℓνℓν (ℓ=e,μℓ=e,μ) decay mode is presented. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 4.7 fb\(^{-1}\) at a centre-of-mass energy of 7 TeV collected during 2011 with the ATLAS detector at the Large Hadron Collider. No significant excess of events over the expected background is observed. An upper bound is placed on the Higgs boson production cross section as a function of its mass. A Standard Model Higgs boson with mass in the range between 133 GeV and 261 GeV is excluded at 95\% confidence level, while the expected exclusion range is from 127 GeV to 233 GeV.}, language = {en} } @article{WeiseBasseLuesebrinkKleinschnitzetal.2011, author = {Weise, Gesa and Basse-L{\"u}sebrink, Thomas C. and Kleinschnitz, Christoph and Kampf, Thomas and Jakob, Peter M. and Stoll, Guido}, title = {In Vivo Imaging of Stepwise Vessel Occlusion in Cerebral Photothrombosis of Mice by \(^{19}\)F MRI}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0028143}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137792}, pages = {e28143}, year = {2011}, abstract = {Background \(^{19}\)F magnetic resonance imaging (MRI) was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared \(^{19}\)F MRI with iron-enhanced MRI in mice with photothrombosis (PT) at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation. Methods/Principal Findings Perfluorocarbons (PFC) or superparamagnetic iron oxide particles (SPIO) were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong \(^{19}\)F signal throughout the entire lesion, two hours delayed application resulted in a rim-like \(^{19}\)F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the \(^{19}\)F markers (infarct core/rim) could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage. Conclusion Our study shows that vessel occlusion can be followed in vivo by \(^{19}\)F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.}, language = {en} }