@article{SaraceniLabopinBrechtetal.2019, author = {Saraceni, Francesco and Labopin, Myriam and Brecht, Arne and Kr{\"o}ger, Nicolaus and Eder, Matthias and Tischer, Johanna and Labussiere-Wallet, Helene and Einsele, Hermann and Beelen, Dietrich and Bunjes, Donald and Niederwieser, Dietger and Bochtler, Tilman and Savani, Bipin N. and Mohty, Mohamad and Nagler, Arnon}, title = {Fludarabine-treosulfan compared to thiotepa-busulfan-fludarabine or FLAMSA as conditioning regimen for patients with primary refractory or relapsed acute myeloid leukemia: a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT)}, series = {Journal of Hematology \& Oncology}, volume = {12}, journal = {Journal of Hematology \& Oncology}, number = {44}, doi = {10.1186/s13045-019-0727-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227345}, pages = {1-10}, year = {2019}, abstract = {Background Limited data is available to guide the choice of the conditioning regimen for patients with acute myeloid leukemia (AML) undergoing transplant with persistent disease. Methods We retrospectively compared outcome of fludarabine-treosulfan (FT), thiotepa-busulfan-fludarabine (TBF), and sequential fludarabine, intermediate dose Ara-C, amsacrine, total body irradiation/busulfan, cyclophosphamide (FLAMSA) conditioning in patients with refractory or relapsed AML. Results Complete remission rates at day 100 were 92\%, 80\%, and 88\% for FT, TBF, and FLAMSA, respectively (p=0.13). Non-relapse mortality, incidence of relapse, acute (a) and chronic (c) graft-versus-host disease (GVHD) rates did not differ between the three groups. Overall survival at 2years was 37\% for FT, 24\% for TBF, and 34\% for FLAMSA (p=0.10). Independent prognostic factors for survival were Karnofsky performance score and patient CMV serology (p=0.01; p=0.02), while survival was not affected by age at transplant. The use of anti-thymocyte globulin (ATG) was associated with reduced risk of grade III-IV aGVHD (p=0.02) and cGVHD (p=0.006), with no influence on relapse. Conclusions In conclusion, FT, TBF, and FLAMSA regimens provided similar outcome in patients undergoing transplant with active AML. Survival was determined by patient characteristics as Karnofsky performance score and CMV serology, however was not affected by age at transplant. ATG appears able to reduce the incidence of acute and chronic GVHD without influencing relapse risk.}, language = {en} } @article{GaritanoTrojaolaSanchoGoetzetal.2021, author = {Garitano-Trojaola, Andoni and Sancho, Ana and G{\"o}tz, Ralph and Eiring, Patrick and Walz, Susanne and Jetani, Hardikkumar and Gil-Pulido, Jesus and Da Via, Matteo Claudio and Teufel, Eva and Rhodes, Nadine and Haertle, Larissa and Arellano-Viera, Estibaliz and Tibes, Raoul and Rosenwald, Andreas and Rasche, Leo and Hudecek, Michael and Sauer, Markus and Groll, J{\"u}rgen and Einsele, Hermann and Kraus, Sabrina and Kort{\"u}m, Martin K.}, title = {Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02215-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260709}, year = {2021}, abstract = {The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML.}, language = {en} } @article{PageWallstabeLotheretal.2021, author = {Page, Lukas and Wallstabe, Julia and Lother, Jasmin and Bauser, Maximilian and Kniemeyer, Olaf and Strobel, Lea and Voltersen, Vera and Teutschbein, Janka and Hortschansky, Peter and Morton, Charles Oliver and Brakhage, Axel A. and Topp, Max and Einsele, Hermann and Wurster, Sebastian and Loeffler, Juergen}, title = {CcpA- and Shm2-Pulsed Myeloid Dendritic Cells Induce T-Cell Activation and Enhance the Neutrophilic Oxidative Burst Response to Aspergillus fumigatus}, series = {Frontiers in Immunology}, volume = {12}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.659752}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239493}, year = {2021}, abstract = {Aspergillus fumigatus causes life-threatening opportunistic infections in immunocompromised patients. As therapeutic outcomes of invasive aspergillosis (IA) are often unsatisfactory, the development of targeted immunotherapy remains an important goal. Linking the innate and adaptive immune system, dendritic cells are pivotal in anti-Aspergillus defense and have generated interest as a potential immunotherapeutic approach in IA. While monocyte-derived dendritic cells (moDCs) require ex vivo differentiation, antigen-pulsed primary myeloid dendritic cells (mDCs) may present a more immediate platform for immunotherapy. To that end, we compared the response patterns and cellular interactions of human primary mDCs and moDCs pulsed with an A. fumigatus lysate and two A. fumigatus proteins (CcpA and Shm2) in a serum-free, GMP-compliant medium. CcpA and Shm2 triggered significant upregulation of maturation markers in mDCs and, to a lesser extent, moDCs. Furthermore, both A. fumigatus proteins elicited the release of an array of key pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-8, and CCL3 from both DC populations. Compared to moDCs, CcpA- and Shm2-pulsed mDCs exhibited greater expression of MHC class II antigens and stimulated stronger proliferation and IFN-γ secretion from autologous CD4\(^+\) and CD8\(^+\) T-cells. Moreover, supernatants of CcpA- and Shm2-pulsed mDCs significantly enhanced the oxidative burst in allogeneic neutrophils co-cultured with A. fumigatus germ tubes. Taken together, our in vitro data suggest that ex vivo CcpA- and Shm2-pulsed primary mDCs have the potential to be developed into an immunotherapeutic approach to tackle IA.}, language = {en} } @article{BelicPageLazariotouetal.2019, author = {Belic, Stanislav and Page, Lukas and Lazariotou, Maria and Waaga-Gasser, Ana Maria and Dragan, Mariola and Springer, Jan and Loeffler, Juergen and Morton, Charles Oliver and Einsele, Hermann and Ullmann, Andrew J. and Wurster, Sebastian}, title = {Comparative Analysis of Inflammatory Cytokine Release and Alveolar Epithelial Barrier Invasion in a Transwell® Bilayer Model of Mucormycosis}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.03204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252477}, year = {2019}, abstract = {Understanding the mechanisms of early invasion and epithelial defense in opportunistic mold infections is crucial for the evaluation of diagnostic biomarkers and novel treatment strategies. Recent studies revealed unique characteristics of the immunopathology of mucormycoses. We therefore adapted an alveolar Transwell® A549/HPAEC bilayer model for the assessment of epithelial barrier integrity and cytokine response to Rhizopus arrhizus, Rhizomucor pusillus, and Cunninghamella bertholletiae. Hyphal penetration of the alveolar barrier was validated by 18S ribosomal DNA detection in the endothelial compartment. Addition of dendritic cells (moDCs) to the alveolar compartment led to reduced fungal invasion and strongly enhanced pro-inflammatory cytokine response, whereas epithelial CCL2 and CCL5 release was reduced. Despite their phenotypic heterogeneity, the studied Mucorales species elicited the release of similar cytokine patterns by epithelial and dendritic cells. There were significantly elevated lactate dehydrogenase concentrations in the alveolar compartment and epithelial barrier permeability for dextran blue of different molecular weights in Mucorales-infected samples compared to Aspergillus fumigatus infection. Addition of monocyte-derived dendritic cells further aggravated LDH release and epithelial barrier permeability, highlighting the influence of the inflammatory response in mucormycosis-associated tissue damage. An important focus of this study was the evaluation of the reproducibility of readout parameters in independent experimental runs. Our results revealed consistently low coefficients of variation for cytokine concentrations and transcriptional levels of cytokine genes and cell integrity markers. As additional means of model validation, we confirmed that our bilayer model captures key principles of Mucorales biology such as accelerated growth in a hyperglycemic or ketoacidotic environment or reduced epithelial barrier invasion upon epithelial growth factor receptor blockade by gefitinib. Our findings indicate that the Transwell® bilayer model provides a reliable and reproducible tool for assessing host response in mucormycosis.}, language = {en} } @article{SausseleHehlmannFabariusetal.2018, author = {Saussele, Susanne and Hehlmann, Ruediger and Fabarius, Alice and Jeromin, Sabine and Proetel, Ulrike and Rinaldetti, Sebastien and Kohlbrenner, Katharina and Einsele, Hermann and Falge, Christine and Kanz, Lothar and Neubauer, Andreas and Kneba, Michael and Stegelmann, Frank and Pfreundschuh, Michael and Waller, Cornelius F. and Oppliger Leibundgut, Elisabeth and Heim, Dominik and Krause, Stefan W. and Hofmann, Wolf-Karsten and Hasford, Joerg and Pfirrmann, Markus and M{\"u}ller, Martin C. and Hochhaus, Andreas and Lauseker, Michael}, title = {Defining therapy goals for major molecular remission in chronic myeloid leukemia: results of the randomized CML Study IV}, series = {Leukemia}, volume = {32}, journal = {Leukemia}, number = {5}, doi = {10.1038/s41375-018-0055-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227528}, pages = {1222-1228}, year = {2018}, abstract = {Major molecular remission (MMR) is an important therapy goal in chronic myeloid leukemia (CML). So far, MMR is not a failure criterion according to ELN management recommendation leading to uncertainties when to change therapy in CML patients not reaching MMR after 12 months. At monthly landmarks, for different molecular remission status Hazard ratios (HR) were estimated for patients registered to CML study IV who were divided in a learning and a validation sample. The minimum HR for MMR was found at 2.5 years with 0.28 (compared to patients without remission). In the validation sample, a significant advantage for progression-free survival (PFS) for patients in MMR could be detected (p-value 0.007). The optimal time to predict PFS in patients with MMR could be validated in an independent sample at 2.5 years. With our model we provide a suggestion when to define lack of MMR as therapy failure and thus treatment change should be considered. The optimal response time for 1\% BCR-ABL at about 12-15 months was confirmed and for deep molecular remission no specific time point was detected. Nevertheless, it was demonstrated that the earlier the MMR is achieved the higher is the chance to attain deep molecular response later.}, language = {en} } @article{RydzekNerreterPengetal.2019, author = {Rydzek, Julian and Nerreter, Thomas and Peng, Haiyong and Jutz, Sabrina and Leitner, Judith and Steinberger, Peter and Einsele, Hermann and Rader, Christoph and Hudecek, Michael}, title = {Chimeric Antigen Receptor Library Screening Using a Novel NF-kappa B/NFAT Reporter Cell Platform}, series = {Molecular Therapy}, volume = {27}, journal = {Molecular Therapy}, number = {2}, doi = {10.1016/j.ymthe.2018.11.015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227193}, pages = {287-299}, year = {2019}, abstract = {Chimeric antigen receptor (CAR)-T cell immunotherapy is under intense preclinical and clinical investigation, and it involves a rapidly increasing portfolio of novel target antigens and CAR designs. We established a platform that enables rapid and high-throughput CAR-screening campaigns with reporter cells derived from the T cell lymphoma line Jurkat. Reporter cells were equipped with nuclear factor kappa B (NF kappa B) and nuclear factor of activated T cells (NFAT) reporter genes that generate a duplex output of enhanced CFP (ECFP) and EGFP, respectively. As a proof of concept, we modified reporter cells with CD19-specific and ROR1-specific CARs, and we detected high-level reporter signals that allowed distinguishing functional from non-functional CAR constructs. The reporter data were highly reproducible, and the time required for completing each testing campaign was substantially shorter with reporter cells (6 days) compared to primary CAR-T cells (21 days). We challenged the reporter platform to a large-scale screening campaign on a ROR1-CAR library, and we showed that reporter cells retrieved a functional CAR variant that was present with a frequency of only 6 in 1.05 x 10(6). The data illustrate the potential to implement this reporter platform into the preclinical development path of novel CAR-T cell products and to inform and accelerate the selection of lead CAR candidates for clinical translation.}, language = {en} } @article{GruendahlWackerEinseleetal.2020, author = {Gr{\"u}ndahl, Marie and Wacker, Beate and Einsele, Hermann and Heinz, Werner J.}, title = {Invasive fungal diseases in patients with new diagnosed acute lymphoblastic leukaemia}, series = {Mycoses}, volume = {63}, journal = {Mycoses}, number = {10}, doi = {10.1111/myc.13151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217844}, pages = {1101 -- 1106}, year = {2020}, abstract = {Background Patients with acute leukaemia have a high incidence of fungal infections. This has primarily been shown in acute myeloid leukaemia and is different for acute lymphoblastic leukaemia. Until now no benefit of mould active prophylaxis has been demonstrated in the latter population. Methods In this retrospective single-centre study, we analysed the incidence, clinical relevance, and outcome of invasive fungal diseases (IFD) as well as the impact of antifungal prophylaxis for the first 100 days following the primary diagnosis of acute lymphoblastic leukaemia. Results In 58 patients a high rate of proven, probable, and possible fungal infections could be demonstrated with a 3.4\%, 8.6\%, and 17.2\% likelihood, respectively. The incidence might be even higher, as nearly 40\% of all patients had no prolonged neutropenia for more than 10 days, excluding those from the European Organization of Research and Treatment of cancer and the Mycoses Study Group criteria for probable invasive fungal disease. The diagnosed fungal diseases had an impact on the duration of hospitalisation, which was 13 days longer for patients with proven/probable IFD compared to patients with no signs of fungal infection. Use of antifungal prophylaxis did not significantly affect the risk of fungal infection. Conclusion Patients with acute lymphoblastic leukaemia are at high risk of acquiring an invasive fungal disease. Appropriate criteria to define fungal infections, especially in this population, and strategies to reduce the risk of infection, including antifungal prophylaxis, need to be further evaluated.}, language = {en} } @article{KouhestaniGeisAlsourietal.2021, author = {Kouhestani, Dina and Geis, Maria and Alsouri, Saed and Bumm, Thomas G. P. and Einsele, Hermann and Sauer, Markus and Stuhler, Gernot}, title = {Variant signaling topology at the cancer cell-T-cell interface induced by a two-component T-cell engager}, series = {Cellular \& Molecular Immunology}, volume = {18}, journal = {Cellular \& Molecular Immunology}, doi = {10.1038/s41423-020-0507-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241189}, pages = {1568-1570}, year = {2021}, abstract = {No abstract available.}, language = {en} } @article{EinseleBorghaeiOrlowskietal.2020, author = {Einsele, Hermann and Borghaei, Hossein and Orlowski, Robert Z. and Subklewe, Marion and Roboz, Gail J. and Zugmaier, Gerhard and Kufer, Peter and Iskander, Karim and Kantarjian, Hagop M.}, title = {The BiTE (Bispecific T-Cell Engager) Platform: Development and Future Potential of a Targeted Immuno-Oncology Therapy Across Tumor Types}, series = {Cancer}, volume = {126}, journal = {Cancer}, number = {14}, doi = {10.1002/cncr.32909}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215426}, pages = {3192 -- 3201}, year = {2020}, abstract = {Immuno-oncology therapies engage the immune system to treat cancer. BiTE (bispecific T-cell engager) technology is a targeted immuno-oncology platform that connects patients' own T cells to malignant cells. The modular nature of BiTE technology facilitates the generation of molecules against tumor-specific antigens, allowing off-the-shelf immuno-oncotherapy. Blinatumomab was the first approved canonical BiTE molecule and targets CD19 surface antigens on B cells, making blinatumomab largely independent of genetic alterations or intracellular escape mechanisms. Additional BiTE molecules in development target other hematologic malignancies (eg, multiple myeloma, acute myeloid leukemia, and B-cell non-Hodgkin lymphoma) and solid tumors (eg, prostate cancer, glioblastoma, gastric cancer, and small-cell lung cancer). BiTE molecules with an extended half-life relative to the canonical BiTE molecules are also being developed. Advances in immuno-oncology made with BiTE technology could substantially improve the treatment of hematologic and solid tumors and offer enhanced activity in combination with other treatments.}, language = {en} } @article{ZhouSteinhardtDuelletal.2020, author = {Zhou, Xiang and Steinhardt, Maximilian Johannes and D{\"u}ll, Johannes and Krummenast, Franziska and Danhof, Sophia and Meckel, Katharina and Nickel, Katharina and Grathwohl, Denise and Leicht, Hans-Benno and Rosenwald, Andreas and Einsele, Hermann and Rasche, Leo and Kort{\"u}m, Martin}, title = {Obinutuzumab and venetoclax induced complete remission in a patient with ibrutinib-resistant non-nodal leukemic mantle cell lymphoma}, series = {European Journal of Haematology}, volume = {104}, journal = {European Journal of Haematology}, number = {4}, doi = {10.1111/ejh.13382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215513}, pages = {352 -- 355}, year = {2020}, abstract = {We herein report the case of a 73-year-old male patient who was diagnosed with leukemic non-nodal MCL. This patient had received six cycles of bendamustine, which resulted in a transient remission, and a second-line therapy with ibrutinib, which unfortunately failed to induce remission. We started a treatment with single-agent obinutuzumab at a dose of 20 mg on day 1, 50 mg on day 2-4, 330 mg on day 5, and 1000 mg on day 6. The laboratory analysis showed a rapid decrease of leukocyte count. Four weeks later, we repeated the treatment with obinutuzumab at a dose of 1000 mg q4w and started a therapy with venetoclax at a dose of 400 mg qd, which could be increased to 800 mg qd from the third cycle. This combination therapy was well tolerated. The patient achieved a complete remission (CR) after three cycles of obinutuzumab and venetoclax. To date, the patient has a progression-free survival of 17 months under ongoing obinutuzumab maintenance q4w. This is the first report about obinutuzumab and venetoclax induced CR in rituximab-intolerant patient with an ibrutinib-resistant MCL. This case suggests that obinutuzumab- and venetoclax-based combination therapy might be salvage therapy in patients with ibrutinib-resistant MCL.}, language = {en} }