@article{JaggiLutzSchlatter1979, author = {Jaggi, W. and Lutz, Werner K. and Schlatter, C.}, title = {Comparative studies on the covalent binding of the carcinogen benzo(a)pyrene to DNA in various model systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61131}, year = {1979}, abstract = {The covalent binding of tritiated benzo(a)pyrene (BP) to DNA has been determined in rat liver in vivo, in rat liver perfused in situ, after incubation of BP with liver single cells, with liver homogenate, with liver microsomes and DNA, with fibroblasts from a rat granulorna pouch, and with · 2 cell lines. Li ver single cells were found to be a valuable compromise between the rnost sensitive system (microsomal incubation of BP with DNA) and the biologically most relevant system (in vivo ).}, subject = {Toxikologie}, language = {en} } @article{JaggiLutzSchlatter1978, author = {Jaggi, W. and Lutz, Werner K. and Schlatter, C.}, title = {Covalent binding of ethinylestradiol and estrone to rat liver DNA in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61162}, year = {1978}, abstract = {Thecovalent bindingof [6,7-\(^3\)H]ethinylestradiol (EE)and [6,7-\(^3\)H]estrone (E) to liver DNA of 200 g female ratswas measured 8 h after the administration of 80 \(\mu\)g (9.2 mCi) estrogen by gavage. The binding is 1.5 for EE and 1.1 for E, expressedas binding to DNA/dose, in units of \(\mu\)mol hormonefmol DNA phosphate/mmole honnone/kg body wt. It is in the same order of magnitude as for benzene and about 10 000 tim es below the binding of typical liver carcinogens, such as aflatoxin B\(_1\) or N,N-dimethylnitrosamine.}, subject = {Toxikologie}, language = {en} } @article{JauchLutz1983, author = {Jauch, A. and Lutz, Werner K.}, title = {In vivo assay for somatic point mutations induced by genotoxic carcinogens: incorporation of [\(^{35}\)S]methionine into a rat liver cytochrome b\(_5\) normally lacking sulphur-containing amino acids}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61047}, year = {1983}, abstract = {The trypsin fragments of rat liver microsomal cytochron1e b\(_5\) (Tb\(_5\)) lack both methionine (met) and cysteine (cys), i.e., the sulphur-containing antino acids. Tb\(_5\) should therefore contain no 358-radioactivity after isolation from animals treated wHh [\(^{35}\)S]met or [\(^{36}\)S]cys. If, however, the nucleic acids coding for this polypeptide have been damaged by a genotoxic carcinogen, a miscoding could result in an incorporation of met or cys into the polypeptide so that Tb\(_8\) could now be \(^{36}\)S-radiolabelled. Two experiments are descrihed. the first one where a toxic regimen of N -nitrosomorpholine (NNM) to rats resulted in a significant increase of \(^{35}\)S-radioactivity in the Tbs of liver microsomes, and a second experiment with a non-toxic regimen of N,N diethylnitrosamine (DENA), where no increase was observable.}, subject = {Toxikologie}, language = {en} } @article{JauchLutz1986, author = {Jauch, A. and Lutz, Werner K.}, title = {Metallothionein protein variants generated in rat liver as a result of DNA and RNA ethylations by the carcinogen diethylnitrosamine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60946}, year = {1986}, abstract = {Metallothionein (MT) is a protein which contains 20 cysteine residues but no aromatic amino acids. It was tested whether treatment of male rats with the hepatocarcinogen diethylnitrosamine (DENA) could ethylate nucleic acids in such a way that protein variants containing measurable amounts of aromatic amino acid residues could be isolated from the livers of treated animals. To give a low Iimit of detection, the "wrong" amino acid precursors were administered in radiolabelled form at high Ievels of activity (7 mCi/kg each of [\(^3\)H]tyrosine and [\(^3\)H]phenylalanine). 11 \(\mu\)Ci/kg [\(^{14}\)C]cysteine was given as an intemal marker for MT biosynthesis. 6 h after amino acid administration, metallothionein (MT) was isolated from the liver and extensively purified. Afteracid hydrolysis and collection of Cys, Tyr, and Phe from an HPLC analysis of the amino acids, the \(^3\)H/\(^{14}\)C ratio was determined. The carcinogen-treated rats exhibited a significantly higher ratio than the vehicle-treated animals. This type of in vivo assay might find interesting applications in the investigation of nucleic acid alkylations as promutagenic lesions.}, subject = {Toxikologie}, language = {en} } @article{JesaitisEricksonKlotzetal.1993, author = {Jesaitis, A. J. and Erickson, R. W. and Klotz, Karl-Norbert and Bommakanti, R. K. and Siemsen, D. W.}, title = {Functional molecular complexes of human N-formyl peptide chemoattractant receptors and actin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60445}, year = {1993}, abstract = {When human neutrophils become desensitized to formyl peptide chemoattractants, the receptors (FPR) for these peptides are converted to a high affinity, GTP-insensitive form that is associated with the Triton X-1 00- insoluble membrane skeleton from surface membrane domains. These domains are actin and fodrin-rich, but G protein-depfeted suggesting that FPR shuttling between G protein-enriched and depleted domains may control signal transduction. Todetermine the molecular basis for FPR interaction with the membrane skeleton, neutrophil subcellular fractions were screened for molecules that could bind photoaffinity-radioiodinated FPR solubilized in Triton X-1 00. These receptors showed a propensity to bind to a 41- to43-kDa proteinband on nitrocelluloseoverlays of SOS-PAGE-separated cytosol and plasma membrane fractions of neutrophils. This binding, as weil as FPR binding to purified neutrophil actin, was inhibited 50\% by 0.6 \(\mu\)M free neutrophil cytosolic actin. Addition of greater than 1 \(\mu\)M G-actin to crude or lectin-purified Triton X-1 00 extracts of FPR from neutrophil membranes increased the sedimentationrate of a significant fraction of FPR two to three fold as measured by velocity sedimentation in Triton X-1 00-containing linear sucrose density gradients. Addition of anti-actin antibodies to FPR extracts caused a concentration-dependent immunoprecipitation of at least 65\% of the FPR. More than 40\% of the immunoprecipitated FPR was specifically retained on protein A affinity matrices. Membrane actin was stabilized to alkaline washing when membranes were photoaffinity labeled. Conversely, when purified neutrophil cytosolic actinwas added to membranes or their digitonin extracts, after prior depletion of actin by an alkaline membrane wash, photoaffinity labeling of FPR was increased two- to fourfold with an EC\(_{50}\) of approximately 0.1 \(\mu\)M actin. We conclude that FPR from human neutrophils may interact with actin in membranes to form Triton X-1 00-stable physical complexes. These complexes can accept additional G-actin monomers to form higher order molecular complexes. Formation of FPR-actin complexes in the neutrophil may play a role in the regulation of chemoattractantinduced activation or actin polymerization.}, subject = {Toxikologie}, language = {en} } @article{KirchnerStopperPappetal.1993, author = {Kirchner, S. and Stopper, Helga and Papp, T. and Eckert, I. and Yoo, H. J. and Vig, B. K. and Schiffmann, D.}, title = {Cytogenetic changes in primary, immortalized and malignant mammalian cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63439}, year = {1993}, abstract = {Some chromosomes in transformed rat cells and somatic cell hybrids fail to display the presence of kinetochore proteins as detected by antikinetochore antibodies. Suchchromosomes (K- Chromosomes) may constitute a novel mechanism for the genesis of aneuploidy. Wehave analyzed primary~ immortalized and malignant marnmalian cells for the presence of kinetochore proteins and micronuclei. Our resuJts suggest a correlation of the K- chromosome and micronucleus frequency with the variability in chromosome number. Upon in situ hybridization with the minor satellite and alpha satellite sequences some Kchromosomes showed a signal. This indicates that the observed lack of kinetocbores is not necessarily due to a lack of centromeric DNA. We conclude that dislocated K- chromosomes may become incorporated into micronuclei which are prone to loss. Such events would be associated with the generation of aneuploidy.}, subject = {Toxikologie}, language = {en} } @article{KlotzCristalliGrifantinietal.1985, author = {Klotz, Karl-Norbert and Cristalli, G. and Grifantini, M. and Vittori, S. and Lohse, M. J.}, title = {Photoaffinity labeling of A\(_1\) adenosine receptors}, series = {The journal of biological chemistry}, volume = {27}, journal = {The journal of biological chemistry}, number = {260}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60198}, year = {1985}, abstract = {The ligand-binding subunit of the A\(_1\)-adenosine receptor has been identified by photoaffinity labeling. A photolabile derivative of R- \(N^6\)-phenylisopropyladenosine, R-2-azido-\(N^6\)-p-hydroxyphenylisopropyladenosine (R-AHPIA), has been synthesized as a covalent specific Iigand for A\(_1\)-adenosine receptors. In adenylate cyclase studies with membranes of rat fat cells and human platelets, R·AHPIA has adenosine receptor agonist activity with a more than 60-fold selectivity for the A\(_1\)-subtype. It competes for [\(^3\)H].\(N^6\)- phenylisopropyladenosine binding to Arreceptors of rat brain membranes with a Ki value of 1.6 nM. After UV irradiation, R-AHPIA binds irreversibly to the receptor, as indicated by a loss of [\(^3\)H)\(N^6\)-phenylisopropyladenosine binding afterextensive washing; the K; value for this photoinactivation is 1.3 nM. The p-hydroxyphenyl substituent of R-AHPIA can be directly radioiodinated to give a photoaffinity Iabel of high specific radioactivity (\(^{125}\)I-AHPIA). This compound has a KD value of about 1.5 nM as assessed from saturation and kinetic experiments. Adenosine analogues compete for \(^{125}\)I-AHPIA binding to rat brain membranes with an order of potency characteristic for A\(_1\)-adenosine receptors. Dissociation curves following UV irradiation at equilibrium demonstrate 30-40\% irreversible specific binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the probe is photoincorporated into a single peptide of M\(_r\) = 35,000. Labeling of this peptide can be blocked specifically and stereoselectively by adenosine receptor agonists and antagonists in a manner which is typical for the A\(_1\)-subtype. The results indicate that \(^{125}\)I-AHPIA identifies the ligand-binding subunit of the A\(_1\)-adenosine receptor, which is a peptide with M\(_r\) = 35,000.}, subject = {Toxikologie}, language = {en} } @article{KlotzJesaitis1994, author = {Klotz, Karl-Norbert and Jesaitis, A. J.}, title = {Neutrophil chemoattractant receptors and the membrane skeleton}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60471}, year = {1994}, abstract = {Signal transduction via receptors for N-formylmethionyl peptide chemoattractants (FPR) on human neutrophils is a highly regulated process which involves participation of cytoskeletal elements. Evidence exists suggesting that the cytoskeleton and/or the membrane skeleton controls the distributJon of FPR in the plane of the plasma membrane, thus controlling the accessibility of FPR to different proteins in functionally distinct domains. In desensitized cells, FPR are restricted todomains which are depleted of G proteins but enriched in cytoskeletal proteins such as actin and fodrin. Thus, the G protein signal transduction partners of FPR become inaccessible to the agonist-occupied receptor, preventing cell activation. The mechanism of interaction of FPR with the membrane skeleton is poorly understood but evidence is accumulating that suggests a direct binding of FPR (and other receptors) to cytoskeletal proteins such as actin.}, subject = {Toxikologie}, language = {en} } @article{KlotzJesaitis1994, author = {Klotz, Karl-Norbert and Jesaitis, A. J.}, title = {Physical coupling of N-formyl peptide chemoattractant receptors to G protein is not affected by desensitization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60483}, year = {1994}, abstract = {Desensitization of N-formyl peptide chemoattractant receptors (FPR) in human neutrophils results in association of these receptors to the membrane skeleton. This is thought to be the critical event in the lateral segregation of receptors and guanyl nucleotide-binding proteins (G proteins) within the plane of the plasma membrane resulting in an interruption of the signaling cascade. In this study we probed the interaction of FPR with G protein in human neutrophils that were desensitized to various degrees. Human neutrophils were desensitized using the photoreactive agonist N-formyl-met-leu-phelys- N\(^\epsilon\)-[\(^{125}\)I]2(p-azidosalicylamido )ethyl-1 ,3 '-dithiopropionate (/MLFK-[\(^{125}\)I]ASD). The interaction if FPR with G protein was studied via a reconstitution assay and subsequent analysis of FPR-G protein complexes in sucrose density gradients. FPR-G protein complexes were reconstituted with solubilized FPR from partially and fully desensitized neutrophils with increasing concentrations of Gi purified from bovine brain. The respective EC\(_{50}\) values for reconstitution were similar to that determined for FPR from unstimulated neutrophils (Bommakanti RK et al., J Bio[ Chem 267: 757~7581, 1992). We conclude, therefore, that the affinity of the interaction of FPR with G protein is not affected by desensitization, consistent with the model of lateral segregation of FPR and G protein as a mechanism of desensitization.}, subject = {Toxikologie}, language = {en} } @article{KlotzJesaitis1994, author = {Klotz, Karl-Norbert and Jesaitis, A. J.}, title = {The interaction of N-formyl peptide chemoattractant receptors with the membrane skeleton is energy-dependent}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60499}, year = {1994}, abstract = {Desensitization of N-fonnyl peptide chemoattractant receptors (FPR) in human neutrophils is thought to be achieved by lateral segregation of receptors and G proteins within the plane of the plasma membrane resulting in an interruption of the signalling cascade. Direct coupling of FPR to membrane skeletal actin appears to be the basis of this process~ however, the molecular mechanism is unknown. In this study we investigated the effect of energy depletion on formation of FPR-membrane skeleton complexes. In addition the effect of the protein kinase C inhibitor stauroporine and the phosphatase inhibitor okadaic acid on coupling of FPR to the membrane skeletonwas studied. Human neutrophils were desensitized using the photoreactive agonist N-formy1-met-leu-phe-1ys-N'[\(^{125}\)I]2(p-azidosalicylamido)ethyl-1,3'-dithiopropionate (fMLFK-[\(^{125}\)I]ASD) after ATP depletion with NaF or after incubation with the respective inhibitors. The interaction of FPR with the membrane skeleton was studied by Sedimentation of the membrane skeleton-associated receptors in sucrose density gradients. Energy depletion of the cells markedly inhibited the formation of FPR-membrane skeleton complexes. This does not appear tobe related to inhibition of protein phosphorylation due to ATP depletion because inhibition of protein kinases and phosphatases bad no significant effect on coupling of FPR to the membrane skeleton. We conclude, therefore, that coupling of FPR to the membrane skeleton is an energy,dependent process which does not appear to require modification of the receptor protein by phosphorylation.}, subject = {Toxikologie}, language = {en} }