@book{Glasgow2018, author = {Glasgow, Rupert}, title = {Minimal Selfhood and the Origins of Consciousness}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-078-8 (Print)}, doi = {10.25972/WUP-978-3-95826-079-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157470}, publisher = {W{\"u}rzburg University Press}, pages = {260}, year = {2018}, abstract = {The aim of the book is to ground the logical origins of consciousness in what I have previously called the 'minimal self'. The idea is that elementary forms of consciousness are logically dependent not, as is commonly assumed, on ownership of an anatomical brain or nervous system, but on the intrinsic reflexivity that defines minimal selfhood. The book seeks to trace the logical pathway by which minimal selfhood gives rise to the possible appearance of consciousness. It is argued that in specific circumstances it thus makes sense to ascribe elementary consciousness to certain predatory single-celled organisms such as amoebae and dinoflagellates as well as to some of the simpler animals. Such an argument involves establishing exactly what those specific circumstances are and determining how elementary consciousness differs in nature and scope from its more complex manifestations.}, subject = {Selbst}, language = {en} } @phdthesis{Pedrotti2018, author = {Pedrotti, Lorenzo}, title = {The SnRK1-C/S1-bZIPs network: a signaling hub in Arabidopsis energy metabolism regulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116080}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The control of energy homeostasis is of pivotal importance for all living organisms. In the last years emerged the idea that many stress responses that are apparently unrelated, are actually united by a common increase of the cellular energy demand. Therefore, the so called energy signaling is activated by many kind of stresses and is responsible for the activation of the general stress response. In Arabidopsis thaliana the protein family SnF1- related protein kinases (SnRK1) is involved in the regulation of many physiological processes but is more known for its involvement in the regulation of the energy homeostasis in response to various stresses. To the SnRK1 protein family belong SnRK1.1 (also known as KIN10), SnRK1.2 (KIN11), and SnRK1.3 (KIN12). SnRK1 exerts its function regulating directly the activity of metabolic enzymes or those of key transcription factors (TFs). The only TFs regulated by SnRK1 identified so far is the basic leucine zipper (bZIP) 63. bZIP63 belongs to the C group of bZIPs (C-bZIPs) protein family together with bZIP9, bZIP10, and bZIP25. SnRK1.1 phosphorylates bZIP63 on three amino acids residues, serine (S) 29, S294, and S300. The phosphorylation of tbZIP63 is strongly related to the energy status of the plant, shifting from almost absent during the normal growth to strongly phosphorylated when the plant is exposed to extended dark. bZIPs normally bind the DNA as dimer in order to regulate the expression of their target genes. C-bZIPs preferentially form dimers with S1-bZIPs, constituting the so called C/S1- bZIPs network. The SnRk1 dependent phosphorylation of bZIP63 regulates its activation potential and its dimerization properties. In particular bZIP63 shift its dimerization preferences according to its phosphorylation status. The non-phosphorylated form of bZIP63 dimerize bZIP1, the phosphorylates ones, instead, forms dimer with bZIP1, bZIP11, and bZIP63 its self. Together with bZIP63, S1-bZIPs are important mediator of part of the huge transcriptional reprogramming induced by SnRK1 in response to extended dark. S1-bZIPs regulate, indeed, the expression of 4'000 of the 10'000 SnRK1-regulated genes in response to energy deprivation. In particular S1-bZIPs are very important for the regulation of many genes encoding for enzymes involved in the amino acid metabolism and for their use as alternative energy source. After the exposition for some hours to extended dark, indeed, the plant make use of every energy substrate and amino acids are considered an important energy source together with lipids and proteins. Interestingly, S1- bZIPs regulate the expression of ETFQO. ETFQO is a unique protein that convoglia the electrons provenienti from the branch chain amino acids catabolism into the mitochondrial electron transport chain. The dimer formed between bZIP63 and bZIP2 recruits SnRK1.1 directly on the chromatin of ETFQO promoter. The recruitment of SnRK1 on ETFQO promoter is associated with its acetylation on the lysine 14 of the histone protein 3 (K14H3). This chromatin modification is normally asociated with an euchromatic status of the DNA and therefore with its transcriptional activation. Beside the particular case of the regulation of ETFQO gene, S1-bZIPs are involved in the regulation of many other genes activated in response of different stresses. bZIP1 is for example an important mediator of the salt stress response. In particular bZIP1 regulates the primary C- and N-metabolism. The expression of bZIP1, in response of both salt ans energy stress seems to be regulated by SnRK1, as it is the expression of bZIP53 and bZIP63. Beside its involvement in the regulation of the energy stress response and salt response, SnRK1 is the primary activators of the lipids metabolism during see germination. SnRK1, indeed, controls the expression of CALEOSINs and OLEOSINs. Those proteins are very important for lipids remobilization from oil droplets. Without their expression seed germination and subsequent establishment do not take place because of the absence of fuel to sustain these highly energy costly processes, which entirely depend on the catabolism of seed storages.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Koenig2018, author = {K{\"o}nig, Julia Maria}, title = {Fungal grass endophytes and their dependence on land-use intensity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163890}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Plant-associated fungi can affect the plants' interaction with herbivores and other microorganisms. For example, many common forage grasses are infected with Epichlo{\"e} endophytes. The endophytes systemically colonize the aerial parts of the plants. They produce bioprotective alkaloids that can negatively affect insects and livestock feeding on the grasses, and interact with other fungal species which living from the plants' nutrients. Environmental conditions strongly influence Epichlo{\"e} endophytes. Endophyte-mediated effects on herbivores are more pronounced under increased temperatures and the endophytes may benefit from land use in managed grasslands. Under the framework of the large-scale German project "Biodiversity Exploratories", I investigated whether infection rates and alkaloid concentrations of Epichlo{\"e} festucae var. lolii in Lolium perenne (Chapter I) and Epichlo{\"e} endophytes (E. uncinata, E. siegelii) in Festuca pratensis (Chapter II) depend on land use and season. Further I analysed, whether foliar fungal assemblages of L. perenne are affected by the presence of Epichlo{\"e} endophytes (Chapter IV).}, subject = {Endophytische Pilze}, language = {en} } @article{WernerAndreeJavadietal.2018, author = {Werner, Rudolf A. and Andree, Christian and Javadi, Mehrbod S. and Lapa, Constantin and Buck, Andreas K. and Higuchi, Takahiro and Pomper, Martin G. and Gorin, Michael A. and Rowe, Steven P. and Pienta, Kenneth J.}, title = {A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging}, series = {Urology - The Gold Journal}, volume = {117}, journal = {Urology - The Gold Journal}, issn = {0090-4295}, doi = {10.1016/j.urology.2018.03.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164632}, pages = {18-21}, year = {2018}, abstract = {No abstract available.}, language = {en} } @phdthesis{Koch2018, author = {Koch, Rainer}, title = {Sensor Fusion for Precise Mapping of Transparent and Specular Reflective Objects}, isbn = {978-3-945459-25-6}, doi = {10.25972/OPUS-16346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Almost once a week broadcasts about earthquakes, hurricanes, tsunamis, or forest fires are filling the news. While oneself feels it is hard to watch such news, it is even harder for rescue troops to enter such areas. They need some skills to get a quick overview of the devastated area and find victims. Time is ticking, since the chance for survival shrinks the longer it takes till help is available. To coordinate the teams efficiently, all information needs to be collected at the command center. Therefore, teams investigate the destroyed houses and hollow spaces for victims. Doing so, they never can be sure that the building will not fully collapse while they are inside. Here, rescue robots are welcome helpers, as they are replaceable and make work more secure. Unfortunately, rescue robots are not usable off-the-shelf, yet. There is no doubt, that such a robot has to fulfil essential requirements to successfully accomplish a rescue mission. Apart from the mechanical requirements it has to be able to build a 3D map of the environment. This is essential to navigate through rough terrain and fulfil manipulation tasks (e.g. open doors). To build a map and gather environmental information, robots are equipped with multiple sensors. Since laser scanners produce precise measurements and support a wide scanning range, they are common visual sensors utilized for mapping. Unfortunately, they produce erroneous measurements when scanning transparent (e.g. glass, transparent plastic) or specular reflective objects (e.g. mirror, shiny metal). It is understood that such objects can be everywhere and a pre-manipulation to prevent their influences is impossible. Using additional sensors also bear risks. The problem is that these objects are occasionally visible, based on the incident angle of the laser beam, the surface, and the type of object. Hence, for transparent objects, measurements might result from the object surface or objects behind it. For specular reflective objects, measurements might result from the object surface or a mirrored object. These mirrored objects are illustrated behind the surface which is wrong. To obtain a precise map, the surfaces need to be recognised and mapped reliably. Otherwise, the robot navigates into it and crashes. Further, points behind the surface should be identified and treated based on the object type. Points behind a transparent surface should remain as they represent real objects. In contrast, Points behind a specular reflective surface should be erased. To do so, the object type needs to be classified. Unfortunately, none of the current approaches is capable to fulfil these requirements. Therefore, the following thesis addresses this problem to detect transparent and specular reflective objects and to identify their influences. To give the reader a start up, the first chapters describe: the theoretical background concerning propagation of light; sensor systems applied for range measurements; mapping approaches used in this work; and the state-of-the-art concerning detection and identification of transparent and specular reflective objects. Afterwards, the Reflection-Identification-Approach, which is the core of subject thesis is presented. It describes 2D and a 3D implementation to detect and classify such objects. Both are available as ROS-nodes. In the next chapter, various experiments demonstrate the applicability and reliability of these nodes. It proves that transparent and specular reflective objects can be detected and classified. Therefore, a Pre- and Post-Filter module is required in 2D. In 3D, classification is possible solely with the Pre-Filter. This is due to the higher amount of measurements. An example shows that an updatable mapping module allows the robot navigation to rely on refined maps. Otherwise, two individual maps are build which require a fusion afterwards. Finally, the last chapter summarizes the results and proposes suggestions for future work.}, subject = {laserscanner}, language = {en} } @phdthesis{Kropf2018, author = {Kropf, Jan}, title = {The Dual Olfactory Pathway in the Honeybee Brain: Sensory Supply and Electrophysiological Properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108369}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The olfactory sense is of utmost importance for honeybees, Apis mellifera. Honeybees use olfaction for communication within the hive, for the identification of nest mates and non-nest mates, the localization of food sources, and in case of drones (males), for the detection of the queen and mating. Honeybees, therefore, can serve as excellent model systems for an integrative analysis of an elaborated olfactory system. To efficiently filter odorants out of the air with their antennae, honeybees possess a multitude of sensilla that contain the olfactory sensory neurons (OSN). Three types of olfactory sensilla are known from honeybee worker antennae: Sensilla trichoidea, Sensilla basiconica and Sensilla placodea. In the sensilla, odorant receptors that are located in the dendritic arborizations of the OSNs transduce the odorant information into electrical information. Approximately 60.000 OSN axons project in two parallel bundles along the antenna into the brain. Before they enter the primary olfactory brain center, the antennal lobe (AL), they diverge into four distinct tracts (T1-T4). OSNs relay onto ~3.000-4.000 local interneurons (LN) and ~900 projection neurons (PN), the output neurons of the AL. The axons of the OSNs together with neurites from LNs and PNs form spheroidal neuropil units, the so-called glomeruli. OSN axons from the four AL input tracts (T1-T4) project into four glomerular clusters. LNs interconnect the AL glomeruli, whereas PNs relay the information to the next brain centers, the mushroom body (MB) - associated with sensory integration, learning and memory - and the lateral horn (LH). In honeybees, PNs project to the MBs and the LH via two separate tracts, the medial and the lateral antennal-lobe tract (m/lALT) which run in parallel in opposing directions. The mALT runs first to the MB and then to the LH, the lALT runs first to the LH and then to the MB. This dual olfactory pathway represents a feature unique to Hymenoptera. Interestingly, both tracts were shown to process information about similar sets of odorants by extracting different features. Individual mALT PNs are more odor specific than lALT PNs. On the other hand, lALT PNs have higher spontaneous and higher odor response action potential (AP) frequencies than mALT PNs. In the MBs, PNs form synapses with ~184.000 Kenyon cells (KC), which are the MB intrinsic neurons. KCs, in contrast to PNs, show almost no spontaneous activity and employ a spatially and temporally sparse code for odor coding. In manuscript I of my thesis, I investigated whether the differences in specificity of odor responses between m- and lALT are due to differences in the synaptic input. Therefore, I investigated the axonal projection patterns of OSNs housed in S. basiconica in honeybee workers and compared them with S. trichoidea and S. placodea using selective anterograde labeling with fluorescent tracers and confocal- microscopy analyses of axonal projections in AL glomeruli. Axons of S. basiconica-associated OSNs preferentially projected into the T3 input-tract cluster in the AL, whereas the two other types of sensilla did not show a preference for a specific glomerular cluster. T3- associated glomeruli had previously been shown to be innervated by mALT PNs. Interestingly, S. basiconica as well as a number of T3 glomeruli lack in drones. Therefore I set out to determine whether this was associated with the reduction of glomeruli innervated by mALT PNs. Retrograde tracing of mALT PNs in drones and counting of innervated glomeruli showed that the number of mALT-associated glomeruli was strongly reduced in drones compared to workers. The preferential projections of S. basiconica-associated OSNs into T3 glomeruli in female workers together with the reduction of mALT-associated glomeruli in drones support the presence of a female-specific olfactory subsystem that is partly innervated by OSNs from S. basiconica and is associated with mALT projection neurons. As mALT PNs were shown to be more odor specific, I suppose that already the OSNs in this subsystem are more odor specific than lALT associated OSNs. I conclude that this female-specific subsystem allows the worker honeybees to respond adequately to the enormous variety of odorants they experience during their lifetime. In manuscript II, I investigated the ion channel composition of mALT and lALT PNs and KCs in situ. This approach represents the first study dealing with the honeybee PN and KC ion channel composition under standard conditions in an intact brain preparation. With these recordings I set out to investigate the potential impact of intrinsic neuronal properties on the differences between m- and lALT PNs and on the sparse odor coding properties of KCs. In PNs, I identified a set of Na+ currents and diverse K+ currents depending on voltage and Na+ or Ca2+ that support relatively high spontaneous and odor response AP frequencies. This set of currents did not significantly differ between mALT and lALT PNs, but targets for potential modulation of currents leading to differences in AP frequencies were found between both types of PNs. In contrast to PNs, KCs have very prominent K+ currents, which are likely to contribute to the sparse response fashion observed in KCs. Furthermore, Ca2+ dependent K+ currents were found, which may be of importance for coincidence detection, learning and memory formation. Finally, I conclude that the differences in odor specificity between m- and lALT PNs are due to their synaptic input from different sets of OSNs and potential processing by LNs. The differences in spontaneous activity between the two tracts may be caused by different neuronal modulation or, in addition, also by interaction with LNs. The temporally sparse representation of odors in KCs is very likely based on the intrinsic KC properties, whereas general excitability and spatial sparseness are likely to be regulated through GABAergic feedback neurons.}, subject = {Voltage-Clamp-Methode}, language = {en} } @phdthesis{Collenburg2018, author = {Collenburg, Lena}, title = {The Role of Ceramides and Sphingomyelinases for Dynamic Membrane Processes in T Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Previous work of our group has established a role of sphingomyelinases in the regulation of T cell responses to TCR or pathogen stimulation, and this became particularly evident at the level of actin cytoskeletal dynamics. The formation of lipid membrane microdomains is crucial for receptor clustering and signal induction, and therefore, ceramide accumulation by membrane sphingomyelin breakdown is needed for signalling- complex-assembly. Pathogen-induced overshooting of SMase activation substantially impacted the formation of membrane protrusions, with T cell spreading as well as a front/rear polarisation upon CD3/CD28 co-stimulation [103]. On the other hand, NSM activation is part of the physiological TCR signal [67], indicating that a spatiotemporally balanced NSM activation is crucial for its physiological function. It involves actin cytoskeletal reorganisation and T cell polarisation. These two functions are also of central importance in directional T cell migration and motility in tissues. This thesis aims on defining the role of NSM in compartmentalisation of the T cell membrane in polarisation and migration. Therefore, functional studies on the impact of NSM activity in these processes had to be complemented by the development of tools to study ceramide compartmentalisation in living T cells.}, subject = {Ceramides}, language = {en} } @article{WernerChenHiranoetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Hirano, Mitsuru and Rowe, Steven P. and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {SPECT vs. PET in Cardiac Innervation Imaging: Clash of the Titans}, series = {Clinical and Translational Imaging}, journal = {Clinical and Translational Imaging}, issn = {2281-5872}, doi = {10.1007/s40336-018-0289-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163628}, year = {2018}, abstract = {Purpose: We aim to provide an overview of the conventional single photon emission computed tomography (SPECT) and emerging positron emission tomography (PET) catecholamine analogue tracers for assessing myocardial nerve integrity, in particular focusing on \(^{18}\)F-labeled tracers. Results: Increasingly, the cardiac sympathetic nervous system (SNS) is being studied by non-invasive molecular imaging approaches. Forming the backbone of myocardial SNS imaging, the norepinephrine (NE) transporter at the sympathetic nerve terminal plays a crucial role for visualizing denervated myocardium: in particular, the single-photon-emitting NE analogue \(^{123}\)I-meta-Iodobenzylguanidine (\(^{123}\)I-mIBG) has demonstrated favorable results in the identification of patients at a high risk for cardiac death. However, cardiac neuronal PET agents offer several advantages inlcuding improved spatio-temporal resolution and intrinsic quantifiability. Compared to their \(^{11}\)C-labeled counterparts with a short half-life (20.4 min), novel \(^{18}\)F-labeled PET imaging agents to assess myocardial nerve integrity have the potential to revolutionize the field of SNS molecular imaging: The longer half-life of \(^{18}\)F (109.8 min) allows for more flexibility in the study design and delivery from central cyclotron facilities to smaller hospitals may lead to further cost reduction. A great deal of progress has been made by the first in-human studies of such \(^{18}\)F-labeled SNS imaging agents. Moreover, dedicated animal platforms open avenues for further insights into the handling of radiolabeled catecholamine analogues at the sympathetic nerve terminal. Conclusions: \(^{18}\)F-labeled imaging agents demonstrate key properties for mapping cardiac sympathetic nerve integrity and might outperform current SPECT-based or \(^{11}\)C-labeled tracers in the long run.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @phdthesis{Bury2018, author = {Bury, Susanne}, title = {Molekularbiologische Untersuchungen der antagonistischen Effekte des probiotischen \(Escherichia\) \(coli\) Stamms Nissle 1917 auf Shiga-Toxin produzierende \(Escherichia\) \(coli\) St{\"a}mme}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163401}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Shiga toxin produzierende E. coli (STEC) stellen mit einer Infektionsdosis von gerade einmal 100 Bakterien ein großes Risiko f{\"u}r unsere Gesundheit dar. Betroffene Patienten k{\"o}nnen milde Krankheitssymptome wie w{\"a}ssrigen Durchfall aufweisen, welcher sich allerdings zu blutigem Durchfall oder dem h{\"a}molytisch ur{\"a}mischen Syndrom (HUS) weiterentwickeln kann. Die Ursache f{\"u}r das Krankheitsbild ist das zytotoxische Protein Shiga-Toxin (Stx), welches von STEC St{\"a}mmen produziert wird, eukaryotischen Zellen angreift und den apoptotischen Zelltod induziert. Es konnte gezeigt werden, dass infizierte Patienten in ihrem Krankheitsverlauf stark variieren, was unter anderem auf die Zusammensetzung ihrer Mikrobiota zur{\"u}ckzuf{\"u}hren sein k{\"o}nnte. Diesbez{\"u}glich k{\"o}nnen zum Beispiel einige Bakterien bereits die Darmbesiedlung von STEC St{\"a}mmen unterbinden, wohingegen andere die Toxin Produktion der pathogenen St{\"a}mme beeinflussen und wieder andere von den stx tragenden Phagen infiziert werden k{\"o}nnen und daraufhin selbst zu Toxin produzierenden St{\"a}mmen werden. Da die genetischen Informationen f{\"u}r das Toxin auf einem Prophagen im Genom der STEC St{\"a}mme kodiert ist, f{\"u}hrt eine Antibiotika Behandlung von infizierten Patienten zwar zum Tod der Bakterien, hat allerdings auch einen Wechsel vom lysogenen zum lytischen Phagen Zyklus und damit einen enormen Anstieg an freigesetztem Stx zur Folge. In den letzten Jahrzehnten kam es immer wieder zu Epidemien mit STEC St{\"a}mmen, welche auch einige Todesopfer forderten. Die Behandlung von Patienten erfolgt auf Grund von mangelnden Behandlungsm{\"o}glichkeiten meist nur symptomatisch, weswegen neue Strategien f{\"u}r die Behandlung einer STEC Infektion dringend ben{\"o}tigt werden. Der probiotische E. coli Stamm Nissle 1917 (EcN) z{\"a}hlt bereits seit mehr als 100 Jahren als Medikament f{\"u}r Behandlungen von Darmentz{\"u}ndungen. In vitro und in vivo Studien mit dem probiotischen Stamm und STEC St{\"a}mmen konnten zeigen, dass EcN die Produktion von Stx unterdr{\"u}ckt und gleichzeitig die STEC Zellzahl reduziert. Diese Ergebnisse waren der Anlass f{\"u}r diese Studie in der die Auswirkungen von EcN auf STEC St{\"a}mme genauer untersucht wurden, um eine m{\"o}gliche Behandlung von STEC Infektionen mit dem Probiotikum zu gew{\"a}hrleisten. Eines der Hauptziele dieser Studie war es, herauszufinden, ob EcN von stx-Phagen infiziert werden kann und damit selbst zu einem Toxin Produzenten wird. In diesem Falle w{\"a}re eine Behandlung mit dem E. coli Stamm ausgeschlossen, da es den Krankheitsverlauf verschlimmern k{\"o}nnte. Verschiedene experimentelle Ans{\"a}tze in denen versucht wurde den YaeT stx-Phagen Rezeptor tragenden Stamm zu infizieren schlugen fehl. Weder mittels PCR Analysen, Phagen Plaque Assays oder der Phagen Anreicherung konnte eine Lyse oder eine Prophagen Integration nachgewiesen werden. Transkriptom Analysen konnten zeigen, dass Gene eines lambdoiden Prophagen in EcN in Anwesenheit von stx-Phagen stark reguliert sind. Auch andere E. coli St{\"a}mme, welche sich ebenfalls durch eine Resistenz gegen{\"u}ber einer stx-Phagen Infektion auswiesen, wurden positiv auf lambdoide Prophagen untersucht. Einzig dem stx-Phagen sensitiven K-12 Stamm MG1655 fehlt ein kompletter lambdoider Prophage, weswegen die Vermutung nahe liegt, dass ein intakter lambdoider Prophage vor der Superinfektion mit stx-Phagen sch{\"u}tzten kann. In weiteren Experimenten wurde der Einfluss der Mikrozin-negativen EcN Mutante SK22D auf STEC St{\"a}mme untersucht. Es konnte gezeigt werden, dass SK22D nicht nur die Produktion des zytotoxischen Proteins unterdr{\"u}ckt, sondern auch mit der Produktion der stx-Phagen von allen getesteten STEC St{\"a}mmen interferiert (O157:H7, O26:H11, O145:H25, O103:H2, O111:H- und zwei O104:H4 Isolate vom STEC Ausbruch in Deutschland im Jahr 2011). Transwell Studien konnten zeigen, dass der Faktor, welcher die Transkription des Prophagen unterdr{\"u}ckt, von SK22D sekretiert wird. Die Ergebnisse lassen vermuten, dass die Pr{\"a}senz von SK22D den lysogenen Zustand des Prophagen st{\"u}tzt und somit den lytischen Zyklus unterdr{\"u}ckt. Da stx-Phagen eine große Gefahr darstellen andere E. coli St{\"a}mme zu infizieren, haben wir uns in weiteren Studien dem Einfluss von EcN auf isolierte Phagen gewidmet. Die Kultivierungsexperimente von EcN mit Phagen zeigten, dass der probiotische Stamm in der Lage war die stx-Phagen in ihrer Effizienz der Lyse des K 12 Stammes MG1655 von~ 1e7 pfus/ml auf 0 pfus/ml nach einer 44 st{\"u}ndigen Inkubation zu inaktivieren. Diese Inaktivierung konnte auf die Aktivit{\"a}t eines hitzestabilen Proteins, welches in der station{\"a}ren Wachstumsphase synthetisiert wird, zur{\"u}ckgef{\"u}hrt werden. Studien welche einen Anstieg der Biofilmmasse zur Folge hatten zeigten eine gesteigerte Effizienz in der Phagen Inaktivierung, weswegen Komponenten des Biofilms m{\"o}glicherweise die Phagen Inaktivierung herbeif{\"u}hren. Neben dem direkten Einfluss auf die Phagen wurde auch ein Schutzeffekt von SK22D gegen{\"u}ber dem stx-Phagen empf{\"a}nglichen K 12 St{\"a}mmen untersucht. Lysogene K 12 St{\"a}mme zeichneten sich durch eine enorme Stx und stx-Phagen Produktion aus. Die Pr{\"a}senz von SK22D konnte den K 12 vermittelten Anstieg der pathogenen Faktoren unterbinden. Transwell Ergebnisse und Kinetik Studien lassen vermuten, dass SK22D eher die Phagen Infektion von K-12 St{\"a}mmen unterbindet als die Lyse von lysogenen K-12 St{\"a}mmen zu st{\"o}ren. Eine m{\"o}gliche Erkl{\"a}rung f{\"u}r den Schutz der K-12 St{\"a}mme vor einer stx-Phagen Infektion k{\"o}nnte darin liegen, dass die K-12 St{\"a}mme innerhalb der SK22D Kultur wachsen und dadurch von den infekti{\"o}sen Phagen abgeschirmt werden. Zusammenfassend konnte in dieser Studie gezeigt werden, dass der probiotische Stamm EcN sowohl die Lyse von STEC St{\"a}mmen unterdr{\"u}ckt als auch die infekti{\"o}sen stx-Phagen inaktiviert und sensitive E. coli St{\"a}mme vor der Phagen Infektion sch{\"u}tzen kann. Diese Ergebnisse sollten als Grundlage f{\"u}r in vivo Studien herangezogen werden, um eine m{\"o}gliche Behandlung von STEC infizierten Patienten mit dem Probiotikum zu gew{\"a}hrleisten.}, subject = {EHEC}, language = {en} } @phdthesis{Balasubramanian2018, author = {Balasubramanian, Srikkanth}, title = {Novel anti-infectives against pathogenic bacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163882}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Marine sponge-associated actinomycetes are reservoirs of diverse natural products with novel biological activities. Their antibiotic potential has been well explored against a range of Gram positive and negative bacteria. However, not much is known about their anti-infective or anti-virulence potential against human pathogens. This Ph.D. project aimed to investigate the anti-infective (anti-Shiga toxin and anti-biofilm) potential of sponge-derived actinobacteria through identification and isolation of their bioactive metabolites produced and characterizing their mechanism of action by transcriptomics. This thesis is divided into three studies with the overall objective of exploring the anti-infective efficacy of actinomycetes-derived extracts and compound(s) that could possibly be used as future therapeutics. The first study deals with investigation on the anti-Shiga toxin effects of sponge-associated actinomycetes. Diarrheal infections pose a huge burden in several developing and developed countries. Diarrheal outbreaks caused by Enterohemorrhagic Escherichia coli (EHEC) could lead to life-threatening complications like gastroenteritis and haemolytic uremic syndrome (HUS) if left untreated. Shiga toxin (Stx) produced by EHEC is a major virulence factor that negatively affects the human cells, leading them to death via apoptosis. Antibiotics are not prescribed against EHEC infections since they may enhance the risk of development of HUS by inducing the production and release of Stx from disintegrating bacteria and thereby, worsening the complications. Therefore, an effective drug that blocks the Stx production without affecting the growth needs to be urgently developed. In this study, the inhibitory effects of 194 extracts and several compounds originating from a collection of marine sponge-derived actinomycetes were evaluated against the Stx production in EHEC strain EDL933 with the aid of Ridascreen® Verotoxin ELISA assay kit. It was found that treatment with the extracts did not lead to significant reduction in Stx production. However, strepthonium A isolated from the culture of Streptomyces sp. SBT345 (previously cultivated from the Mediterranean sponge Agelas oroides) reduced the Stx production (at 80 μM concentration) in EHEC strain EDL933 without affecting the bacterial growth. The structure of strepthonium A was resolved by spectroscopic analyses including 1D and 2D-NMR, as well as ESI-HRMS and ESI-HRMS2 experiments. This demonstrated the possible application of strepthonium A in restraining EHEC infections. VI In the second study, the effect of marine sponge-associated actinomycetes on biofilm formation of staphylococci was assessed. Medical devices such as contact lenses, metallic implants, catheters, pacemakers etc. are ideal ecological niches for formation of bacterial biofilms, which thereby lead to device-related infections. Bacteria in biofilms are multiple fold more tolerant to the host immune responses and conventional antibiotics, and hence are hard-to-treat. Here, the anti-biofilm potential of an organic extract derived from liquid fermentation of Streptomyces sp. SBT343 (previously cultivated from the Mediterranean sponge Petrosia ficiformis) was reported. Results obtained in vitro demonstrated its anti-biofilm (against staphylococci) and non-toxic nature (against mouse macrophage (J774.1), fibroblast (NIH/3T3) and human corneal epithelial cell lines). Interestingly, SBT343 extract could inhibit staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces without affecting the bacterial growth. High Resolution Fourier Transform Mass Spectrometry (HR-MS) analysis indicated the complexity and the chemical diversity of components present in the extract. Preliminary physio-chemical characterization unmasked the heat stable and non-proteinaceous nature of the active component(s) in the extract. Finally, fractionation experiments revealed that the biological activity was due to synergistic effects of multiple components present in the extract. In the third study, anti-biofilm screening of 50 organic extracts generated from solid and liquid fermentation of 25 different previously characterized sponge-derived actinomycetes was carried out. This led to identification of the anti-biofilm organic extract derived from the solid culture of Streptomyces sp. SBT348 (previously cultivated from the Mediterranean sponge Petrosia ficiformis). Bioassay-guided fractionation was employed to identify the active fraction Fr 7 in the SBT348 crude extract. Further purification with semi-preparative HPLC led to isolation of the bioactive SKC1, SKC2, SKC3, SKC4 and SKC5 sub-fractions. The most active sub-fraction SKC3 was found to be a pure compound having BIC90 and MIC values of 3.95 μg/ml and 31.25 μg/ml against S. epidermidis RP62A. SKC3 had no apparent toxicity in vitro on cell lines and in vivo on the greater wax moth Galleria melonella larvae. SKC3 was stable to heat and enzymatic treatments indicating its non-proteinaceous nature. HR-MS analysis revealed the mass of SKC3 to be 1258.3 Da. Structure elucidation of SKC3 with the aid of 1D and 2D-NMR data is currently under investigation. Further, to obtain insights into the mode of action of SKC3 on S. epidermidis RP62A, RNA sequencing was done. Transcriptome data revealed that SKC3 was recognized by RP62A at 20 min and SKC3 negatively interfered with the central metabolism of staphylococci at 3 h. Taken VII together, these findings suggest that SKC3 could be a lead structure for development of new anti-staphylococcal drugs. Overall, the results obtained from this work underscore the anti-infective attributes of actinomycetes consortia associated with marine sponges, and their applications in natural product drug discovery programs.}, subject = {Marine sponges}, language = {en} }