@phdthesis{Becker2018, author = {Becker, Nils}, title = {Mechanisms and consequences of environmentally and behaviorally induced synaptic plasticity in the honey bee brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138466}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The brain is the central organ of an animal controlling its behavior. It integrates internal information from the body and external stimuli from the surrounding environment to mediate an appropriate behavioral response. Since the environment is constantly changing, a flexible adjustment of the brain to new conditions is crucial for the animals' fitness. The ability of the nervous system to adapt to new challenges is defined as plasticity. Over the last few decades great advances have been made in understanding the cellular and molecular mechanisms underlying neuronal plasticity. Plasticity may refer to structural changes physically remodeling the neuronal circuit, or to functional adaptations which are manifested in modified synaptic transmission, and in altered response and firing properties of single neurons. These structural and functional modifications are mediated by a complex interplay of environmental stimuli, intracellular signal transduction cascades, protein modifications, gene translation and transcription, and epigenetic gene regulatory mechanisms. However, especially the molecular mechanisms of environmentally-induced structural neuronal plasticity are still poorly understood. In this thesis the honey bee was used as an innovative model organism to investigate this issue. The honey bee with its rich behavioral repertoire, highly sophisticated and plastic neuronal system, sequenced genome and full epigenetic machinery is well suited for studying the molecular underpinnings of environmentally-induced neuronal plasticity. Adult honey bees progress through a series of tasks within the dark hive until after about three weeks they start with foraging activities in the external world. The transition from in-hive to outside tasks is associated with remarkable structural neuronal plasticity. Subdivisions of the mushroom body, a brain region related to higher cognitive functions, are increased in volume. The volume expansion is mediated by a remarkable outgrowth of the dendritic network of mushroom body intrinsic neurons, so called Kenyon cells. In parallel, prominent synaptic structures, referred to as microglomeruli, are pruned. Most interestingly for this thesis, the pruning of microglomeruli and the dendritic expansion in Kenyon cells can be induced by a simple light exposure paradigm. In the first chapter of the present thesis I used this paradigm to induce synaptic plasticity in the mushroom bodies under controlled lab conditions to search for correlating molecular changes which possibly mediate the observed plasticity. I compared the brain transcriptome of light-exposed and dark-kept control bees by whole transcriptome sequencing. This revealed a list of differentially expressed genes (DEGs). The list contains conserved genes which have reported functions in neuronal plasticity, thereby introducing them as candidate genes for plasticity in the honey bee brain. Furthermore, with this transcriptomic approach I discovered many candidate genes with unknown functions or functions so far unrelated to neuronal plasticity suggesting that these novel genes may have yet unrecognized roles in neuronal plasticity. A number of DEGs are known to be methylated or to exert epigenetic modifications on themselves speaking for a strong impact of epigenetic mechanisms in light-induced structural plasticity in the honey bee brain. This notion is supported by a differential methylation pattern of one examined DEG between light-exposed and dark-kept bees as shown in this thesis. Also a plasticity-related microRNA, which is predicted to target genes associated with cytoskeleton formation, was found to be upregulated in light-exposed bees. This speaks for a translation regulatory mechanism in structural plasticity in the honey bee. Another interesting outcome of this study is the age-dependent expression of DEGs. For some plasticity-related DEGs, the amplitude of light-induced expression differs between one- and seven-day-old bees, and also the basal expression level of many DEGs in naive dark-kept control bees significantly varies between the two age groups. This suggests that the responsiveness of plasticity-related genes to environmental stimuli is also under developmental (age-dependent) control, which may be important for normal maturation and for the regulation of age-related changes in behavior. Indeed, I was able to demonstrate in phototaxis experiments that one- and seven-day-old bees show different behaviors in response to light exposure and thus the correlating age-dependent transcriptional differences may serve as mechanisms promoting age-related changes in behavior. Together the results of the transcriptomic study demonstrate the successfulness of my approach to identify candidate molecular mechanisms for environmentally-induced structural plasticity in the honey bee brain. Furthermore, the thesis provides seminal evidence for the implication of DNA methylation in this process. To better understand the role of DNA methylation for neuronal and behavioral plasticity in the honey bee, the second chapter of the thesis aims at characterizing this molecular process under more natural conditions. Therefore, I examined the expression of the DNA methyltransferase 3 (DNMT3) and of Ten-eleven translocation methylcytosine dioxygenase (TET) between in-hive bees and foragers. DNMT3 is responsible for DNA de novo methylation, whereas TET promotes DNA demethylation by converting methylcytosine (5mC) to hydroxymethylcytosine (5hmC). The data suggest that age and experience determine the expression of these two epigenetic key genes. Additionally, in this context, two examined DEGs are shown to be differentially methylated between nurses and foragers. One of these two DEGs, the plasticity related gene bubblegum (bgm), also exhibits an altered DNA methylation pattern in response to light exposure. Hence, these results of my thesis provide additional evidence for the importance of DNA methylation in behavioral and neuronal plasticity. Results from the second chapter of this thesis also suggest additional functions of DNMT3 and TET to their traditional roles in DNA methylation/demethylation. I show that TET is far more expressed in the honey bee brain than DNMT3. This stands in contrast to the relative scarcity of 5hmC compared to 5mC and points at extra functions of this gene like RNA modifications as reported for Drosophila. Antibody staining against the DNMT3 gene product revealed an unexpected rare localization of the enzyme in the nucleus, but a surprisingly high abundance in the cytoplasm. The role of cytoplasmic DNMT3 is unknown. One possibility for the high abundance in the cytoplasm is a regulatory mechanism for DNA methylation by cytoplasmic-nuclear trafficking, or an additional function of DNMT3 in RNA modification, similar to TET. Altogether, this thesis points at future research directions for neuronal plasticity by providing promising evidence for the involvement of epigenetic mechanisms and of a number of new candidate genes in environmentally induced structural plasticity in the honey bee brain. Furthermore, I present data suggesting so far unrecognized functions of DNMT3 which certainly need to be experimentally addressed in the future to fully understand the role of this enzyme.}, subject = {Neuronale Plastizit{\"a}t}, language = {en} } @phdthesis{Bendias2018, author = {Bendias, Michel Kalle}, title = {Quantum Spin Hall Effect - A new generation of microstructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168214}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The presented thesis summarizes the results from four and a half years of intense lithography development on (Cd,Hg)Te/HgTe/(Cd,Hg)Te quantum well structures. The effort was motivated by the unique properties of this topological insulator. Previous work from Molenkamp at al.\ has proven that the transport through such a 2D TI is carried by electrons with opposite spin, counter-propagating in 1D channels along the sample edge. However, up to this thesis, the length of quantized spin Hall channels has never been reported to exceed 4 µm. Therefore, the main focus was put on a reproducible and easy-to-handle fabrication process that reveals the intrinsic material parameters. Every single lithography step in macro as well as microscopic sample fabrication has been re-evaluated. In the Development, the process changes have been presented along SEM pictures, microgaphs and, whenever possible, measurement responses. We have proven the conventional ion milling etch method to damage the remaining mesa and result in drastically lower electron mobilities in samples of microscopic size. The novel KI:I2:HBr wet etch method for macro and microstructure mesa fabrication has been shown to leave the crystalline structure intact and result in unprecedented mobilities, as high as in macroscopic characterization Hall bars. Difficulties, such as an irregular etch start and slower etching of the conductive QW have been overcome by concentration, design and etch flow adaptations. In consideration of the diffusive regime, a frame around the EBL write field electrically decouples the structure mesa from the outside wafer. As the smallest structure, the frame is etched first and guarantees a non-different etching of the conductive layer during the redox reaction. A tube-pump method assures reproducible etch results with mesa heights below 300 nm. The PMMA etch mask is easy to strip and leaves a clean mesa with no redeposition. From the very first attempts, to the final etch process, the reader has been provided with the characteristics and design requirements necessary to enable the fabrication of nearly any mesa shape within an EBL write field of 200 µm. Magneto resistance measurement of feed-back samples have been presented along the development chronology of wet etch method and subsequent lithography steps. With increasing feature quality, more and more physics has been revealed enabling detailed evaluation of smallest disturbances. The following lithography improvements have been implemented. They represent a tool-box for high quality macro and microstructure fabrication on (CdHg)Te/HgTe of almost any kind. The optical positive resist ECI 3027 can be used as wet and as dry etch mask for structure sizes larger than 1 µm. It serves to etch mesa structures larger than the EBL write field. The double layer PMMA is used for ohmic contact fabrication within the EBL write field. Its thickness allows to first dry etch the (Cd,Hg)Te cap layer and then evaporate the AuGe contact, in situ and self-aligned. Because of an undercut, up to 300 nm can be metalized without any sidewalls after the lift-off. An edge channel mismatch within the contact leads can be avoided, if the ohmic contacts are designed to reach close to the sample and beneath the later gate electrode. The MIBK cleaning step prior to the gate application removes PMMA residuals and thereby improves gate and potential homogeneity. The novel low HfO2-ALD process enables insulator growth into optical and EBL lift-off masks of any resolvable shape. Directly metalized after the insulator growth, the self-aligned method results in thin and homogeneous gate electrode reproducibly withholding gate voltages to +-10 V. The optical negative resist ARN 4340 exhibits an undercut when developed. Usable as dry etch mask and lift-off resist, it enables an in-situ application of ohmic contacts first etching close to the QW, then metalizing AuGe. Up to 500 nm thickness, the undercut guarantees an a clean lift-off with no sidewalls. The undertaken efforts have led to micro Hall bar measurements with Hall plateaus and SdH-oszillations in up to now unseen levels of detail. The gap resistance of several micro Hall bars with a clear QSH signal have been presented in Quantum Spin Hall. The first to exhibit longitudinal resistances close to the expected h/2e2 since years, they reveal unprecedented details in features and characteristics. It has been shown that their protection against backscattering through time reversal symmetry is not as rigid as previously claimed. Values below and above 12.9 kΩ been explained, introducing backscattering within the Landauer-B{\"u}ttiker formalism of edge channel transport. Possible reasons have been discussed. Kondo, interaction and Rashba-backscattering arising from density inhomogeneities close to the edge are most plausible to explain features on and deviations from a quantized value. Interaction, tunneling and dephasing mechanisms as well as puddle size, density of states and Rashba Fields are gate voltage dependent. Therefore, features in the QSH signal are fingerprints of the characteristic potential landscape. Stable up to 11 K, two distinct but clear power laws have been found in the higher temperature dependence of the QSH in two samples. However, with ΔR = Tα, α = ¼ in one (QC0285) and α = 2 in the other (Q2745), none of the predicted dependencies could be confirmed. Whereas, the gap resistances of QC0285 remains QSH channel dominated up to 3.9 T and thereby confirmed the calculated lifting of the band inversion in magnetic field. The gate-dependent oscillating features in the QSH signal of Q2745 immediately increase in magnetic field. The distinct field dependencies allowed the assumption of two different dominant backscattering mechanisms. Resulting in undisturbed magneto transport and unprecedented QSH measurements The Novel Micro Hall Bar Process has proven to enable the fabrication of a new generation of microstructures.}, subject = {Quecksilbertellurid}, language = {en} } @article{WernerBundschuhHiguchietal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Higuchi, Takahiro and Javadi, Mehrbod S. and Rowe, Steven P. and Zs{\´o}t{\´e}r, Norbert and Kroiss, Matthias and Fassnacht, Martin and Buck, Andreas K. and Kreissl, Michael C. and Lapa, Constantin}, title = {Volumetric and Texture Analysis of Pretherapeutic \(^{18}\)F-FDG PET can Predict Overall Survival in Medullary Thyroid Cancer Patients Treated with Vandetanib}, series = {Endocrine}, journal = {Endocrine}, issn = {1355-008X}, doi = {10.1007/s12020-018-1749-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167910}, year = {2018}, abstract = {Purpose: The metabolically most active lesion in 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) PET/CT can predict progression-free survival (PFS) in patients with medullary thyroid carcinoma (MTC) starting treatment with the tyrosine kinase inhibitor (TKI) vandetanib. However, this metric failed in overall survival (OS) prediction. In the present proof of concept study, we aimed to explore the prognostic value of intratumoral textural features (TF) as well as volumetric parameters (total lesion glycolysis, TLG) derived by pre-therapeutic \(^{18}\)F-FDG PET. Methods: Eighteen patients with progressive MTC underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after vandetanib initiation. By manual segmentation of the tumor burden at baseline and follow-up PET, intratumoral TF and TLG were computed. The ability of TLG, imaging-based TF, and clinical parameters (including age, tumor marker doubling times, prior therapies and RET (rearranged during transfection) mutational status) for prediction of both PFS and OS were evaluated. Results: The TF Complexity and the volumetric parameter TLG obtained at baseline prior to TKI initiation successfully differentiated between low- and high-risk patients. Complexity allocated 10/18 patients to the high-risk group with an OS of 3.3y (vs. low-risk group, OS=5.3y, 8/18, AUC=0.78, P=0.03). Baseline TLG designated 11/18 patients to the high-risk group (OS=3.5y vs. low-risk group, OS=5y, 7/18, AUC=0.83, P=0.005). The Hazard Ratio for cancer-related death was 6.1 for Complexity (TLG, 9.5). Among investigated clinical parameters, the age at initiation of TKI treatment reached significance for PFS prediction (P=0.02, OS, n.s.). Conclusions: The TF Complexity and the volumetric parameter TLG are both independent parameters for OS prediction.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @unpublished{BoehnkeArrowsmithBraunschweig2018, author = {B{\"o}hnke, Julian and Arrowsmith, Merle and Braunschweig, Holger}, title = {Activation of a Zerovalent Diboron Compound by Desymmetrization}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.8b06930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167983}, year = {2018}, abstract = {The desymmetrization of the cyclic (alkyl)(amino)carbene-supported diboracumulene, B\(_2\)(cAAC\(^{Me}\))\(_2\) (cAAC\(^{Me}\) = 1- (2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) by mono-adduct formation with IMe\(^{Me}\) (1,3-dimethylimidazol-2-ylidene) yields the zerovalent sp-sp\(^2\) diboron compound B\(_2\)(cAAC\(^{Me}\))\(_2\)(IMe\(^{Me}\)), which provides a versatile platform for the synthesis of novel symmetrical and unsymmetrical zerovalent sp\(^2\)-sp\(^2\) diboron compounds by adduct formation with IMe\(^{Me}\) and CO, respectively. Furthermore, B\(_2\)(cAAC\(^{Me}\))\(_2\)(IMe\(^{Me}\)) displays enhanced reactivity compared to its symmetrical precursor, undergoing spontaneous intramolecular C-H activation and facile twofold hydrogenation, the latter resulting in B-B bond cleavage and the formation of the mixed-base parent borylene, (cAAC\(^{Me}\))(IMe\(^{Me}\))BH.}, language = {en} } @unpublished{HermannCidMattocketal.2018, author = {Hermann, Alexander and Cid, Jessica and Mattock, James D. and Dewhurst, Rian D. and Krummenacher, Ivo and Vargas, Alfredo and Ingleson, Michael J. and Braunschweig, Holger}, title = {Diboryldiborenes: π-Conjugated B\(_4\) Chains Isoelectronic to the Butadiene Dication}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201805394}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167977}, year = {2018}, abstract = {sp\(^2\)-sp\(^3\) diborane species based on bis(catecholato)diboron and N-heterocyclic carbenes (NHCs) are subjected to catechol/bromide exchange selectively at the sp\(^3\) boron atom. The reduction of the resulting 1,1-dibromodiborane adducts led to reductive coupling and isolation of doubly NHC-stabilized 1,2-diboryldiborenes. These compounds are the first examples of molecules exhibiting pelectron delocalization over an all-boron chain.}, language = {en} } @phdthesis{Technau2018, author = {Technau, Marc}, title = {On Beatty sets and some generalisations thereof}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-088-7 (Print)}, doi = {10.25972/WUP-978-3-95826-089-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163303}, school = {W{\"u}rzburg University Press}, pages = {xv, 88}, year = {2018}, abstract = {Beatty sets (also called Beatty sequences) have appeared as early as 1772 in the astronomical studies of Johann III Bernoulli as a tool for easing manual calculations and - as Elwin Bruno Christoffel pointed out in 1888 - lend themselves to exposing intricate properties of the real irrationals. Since then, numerous researchers have explored a multitude of arithmetic properties of Beatty sets; the interrelation between Beatty sets and modular inversion, as well as Beatty sets and the set of rational primes, being the central topic of this book. The inquiry into the relation to rational primes is complemented by considering a natural generalisation to imaginary quadratic number fields.}, subject = {Zahlentheorie}, language = {en} } @article{ChenHiranoWerneretal.2018, author = {Chen, Xinyu and Hirano, Mitsuru and Werner, Rudolf A. and Decker, Michael and Higuchi, Takahiro}, title = {Novel \(^{18}\)F-labeled PET Imaging Agent FV45 targeting the Renin-Angiotensin System}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {9}, issn = {2470-1343}, doi = {10.1021/acsomega.8b01885}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167144}, pages = {10460-10470}, year = {2018}, abstract = {Renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure and hormonal balance. Using positron emission tomography (PET) technology, it is possible to monitor the physiological and pathological distribution of angiotensin II type 1 receptors (AT\(_1\)), which reflects the functionality of RAS. A new \(^{18}\)F-labeled PET tracer derived from the clinically used AT\(_1\) antagonist valsartan showing the least possible chemical alteration from the valsartan structure has been designed and synthesized with several strategies, which can be applied for the syntheses of further derivatives. Radioligand binding study showed that the cold reference FV45 (K\(_i\) 14.6 nM) has almost equivalent binding affinity as its lead valsartan (K\(_i\) 11.8 nM) and angiotensin II (K\(_i\) 1.7 nM). Successful radiolabeling of FV45 in a one-pot radiofluorination followed by the deprotection procedure with 21.8 ± 8.5\% radiochemical yield and >99\% radiochemical purity (n = 5) enabled a distribution study in rats and opened a path to straightforward large-scale production. A fast and clear kidney uptake could be observed, and this renal uptake could be selectively blocked by pretreatment with AT\(_1\)-selective antagonist valsartan. Overall, as the first \(^{18}\)F-labeled PET tracer based on a derivation from clinically used drug valsartan with almost identical chemical structure, [\(^{18}\)F]FV45 will be a new tool for assessing the RAS function by visualizing AT\(_i\) receptor distributions and providing further information regarding cardiovascular system malfunction as well as possible applications in inflammation research and cancer diagnosis.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @phdthesis{Maas2018, author = {Maas, Daniel Peter}, title = {Currency Areas, Monetary Policy, and the Macroeconomy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168037}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Hauptgegenstand der Dissertation ist die Analyse der makro{\"o}konomischen Auswirkungen der Gr{\"u}ndung der Eurozone auf die Mitgliedsstaaten. Diese Analyse umfasst zwei Studien, die sich der Fragestellung aus verschiedenen Perspektiven n{\"a}hern. Die erste Studie unternimmt einen Vergleich der Geldpolitik von EZB und von ausgew{\"a}hlten Zentralbanken des Europ{\"a}ischen W{\"a}hrungssystems (EWS). Es wird untersucht, inwiefern sich bei makro{\"o}konomischen Nachfrage- und Angebotsschocks die systematischen Reaktionen der EZB von denen der vier wichtigsten nationalen Zentralbanken des EWS (Deutschland, Frankreich, Italien und Spanien) unterscheiden. In der zweiten Studie werden die Ursachen f{\"u}r den Aufbau interner und externer Ungleichgewichte in Spanien, d.h. auf dem Immobilienmarkt und in der Leistungsbilanz, im Vorfeld der Finanzkrise 2007/08 analysiert. Dabei wird zwischen Spanien-spezifischen und Eurozonen-spezifischen Ursachen unterschieden und deren Erkl{\"a}rungsgehalt empirisch quantifiziert. In der dritten und letzten Studie der Dissertation wird ein preistheoretisches Kreditangebotsmodell entwickelt und empirisch gesch{\"a}tzt. Als Basis f{\"u}r die empirische Sch{\"a}tzung werden Daten des Kreditmarktes f{\"u}r deutsche Unternehmen verwendet. Die methodische Vorgehensweise beinhaltet in allen Studien zeitreihen{\"o}konometrische Ans{\"a}tze wie beispielsweise (Mehrl{\"a}nder-)Vektorautoregressionen (VARs) und Zeitreihenregressionen.}, subject = {Geldpolitik}, language = {en} } @phdthesis{Toepfer2018, author = {Toepfer, Franziska Helene}, title = {Component selectivity and multistability in a \(Drosophila\) orientation paradigm using incoherent motion stimuli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153346}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Visual information is essential for Drosophila to navigate its environment. The visual system of the fly has been studied for many decades and has yielded many insights about vision in general. However, visual information can be ambiguous and the system processing it needs to be able to cope with that. In this study, the visual orientation behavior of Drosophila is challenged by panoramic incoherent motion stimuli to which the fly can respond in three different, equally adaptive ways. The study is conducted in a well-established setup, the so-called flight simulator (Heisenberg and Wolf, 1993), where the fly can control its visual surroundings in stationary flight with its yaw torque, which is simultaneously recorded. The fly can either use one of two incoherently moving panorama patterns or the integrated motion of both as its reference for straight flight. It is observed that flies use all three of these behavioral alternatives for orientation. Previous models of fly motion vision do not predict a bimodal tuning to incoherent wide-field motion stimuli (Joesch et al., 2008, Borst et al., 1995), however, a recent study on blowflies could suggests that they show component selectivity to the individual moving gratings in a compound plaid stimulus (Saleem et al., 2012). Here, it can be shown that the same bimodal tuning manifests in Drosophila, although the stimuli used are different and most of the experiments are conducted in closed loop. It is found that the extent to which the Drosophila expresses this component selectivity in its orientation behavior, i.e. how often it stabilizes a single panorama pattern instead of the integrated motion of both, depends on two properties of the panorama stimuli, pattern contrast and horizontal pattern element distance. Single pattern stabilization decreases with increasing contrast and increasing pattern element distance. In the latter case, it increases again when there are very few horizontal pattern elements, although that appears to be the result of a lack of rivalry between the patterns due to the low number of pattern elements. Both increased pattern contrast and pattern element distance increase the salience of the single pattern elements. A single element in a compound visual stimulus, like a dot within a dot pattern, can be interpreted as a standalone figure or a part of a bigger unit. Previous studies on Drosophila vision have concentrated on how the fly discriminates a figure from the background (Heisenberg and Wolf, 1984, Bahl et al., 2013, Aptekar et al., 2012), but have hardly touched the question of what qualifies a figure or a background (i.e. a panorama) stimulus as such. In the present study, it is observed that, when exposed to incoherent panoramic motion stimuli, the flies prefer to orient themselves towards the average of the two motions when the panorama stimuli possess strong figure features and towards the single patterns when they do not and single pattern elements are therefore less salient. The above-mentioned plaid stimuli are a well-known multistable percept in human psychophysics. Multistability is a property of higher visual systems and considered an indicator of endogenous activity in vision. As Drosophila expresses behavioral multistability in the IPMP, it is evaluated in this respect. The results show several parallels to human multistable perception. For one, the frequency and duration with which a behavior occurs, can be influenced, but the occurrence of the behaviors is non-deterministic and not coupled to the stimulus. It can also be shown that the switches between behaviors do not stem from a rivalry of the two visual hemispheres of the fly, although monocularity does also influence the likelihood with which the behaviors occur. Secondly, like in human perceptual rivalry, individual flies exhibit strong idiosyncrasies regarding the overall durations they spend with the different behaviors and the frequencies with which they switch between them. Finally, the distribution of the durations between the behavioral switches can be fit to the same function as the distribution of percept durations in human multistable perception, the gamma function, although it has a different shape and therefore also differing parameters. The Drosophila mutant radish, which has been shown to have attention-like deficits (van Swinderen and Brembs, 2010, Koenig et al., 2016a), does also express an altered behavior in the IPMP compared to wildtype flies. As these behavioral alterations resemble effects on multistable perception found in humans suffering from ADHD (Amador-Campos et al., 2015) and perceptual multistability is generally considered to be closely related to attention (Leopold and Logothetis, 1999), attentional processes are also very likely to play a role in the flies' behavior in the IPMP. In conclusion, the visual system of Drosophila is capable disentangle incoherent motion stimuli even if they overlap and cover the entire visual field, i.e. it shows component selectivity of wide-field motion. Whether it uses a single wide-field motion component or the average of two as its reference for straight flight depends on pattern contrast and horizontal pattern element density, which indicates an involvement of a figure-background rivalry. This rivalry and the one between the two wide-field motion components elicit a multistability in the orientation behavior of the fly the temporal dynamics of which partially resemble the temporal dynamics of human multistable perception and which also suggests the involvement of attentional processes.}, subject = {Drosophila}, language = {en} } @phdthesis{Jones2018, author = {Jones, Gabriel}, title = {Bioinspired FGF-2 delivery for pharmaceutical application}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153179}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In resent years the rate of biologics (proteins, cytokines and growth-factors) as newly registered drugs has steadily risen. The greatest challenge for pharmaceutical biologics poses its arrival at the desired target location due to e.g. proteolytic and pH dependent degradation, plasma protein binding, insolubility etc. Therefore, advanced drug delivery systems, where biologics are site directed immobilized to carriers mimicking endogenous storage sites such as the extra cellular matrix can enormously assist the application and consequently the release of exogenous administered pharmaceutical biologics. We have resorted to the fibroblast growth factor 2/ heparansulfate/ fibroblast growth factor bindingprotein 1 system as a model. Phase I deals with the selection and subcloning of a wild type murine FGF-2 construct into the bacterial pHis-Trx vector system for high yields of expression and fast, feasible purification measurements. This first step enables the provision of mFGF-2, which plays a pivotal part as a growth factor in the wound healing process as well as the vascularization of tumors, for future investigations. Therefore, the correct expression of mFGF-2 was monitored via MALDI-MS and SDS-PAGE, whereas the proper folding of the tertiary beta-trefoil structure was assessed by fluorescence spectroscopy. The MTT assay allowed us to ensure that the bioactivity was comparable to sourced FGF-2. In the last step, the purity; a requirement for future binding- and protein-protein interaction assays was monitored chromatographically (RP-HPLC). In addition, a formulation for freeze-drying was developed to ensure protein stability and integrity over a period of 60 days. Altogether, the bacterial expression and purification proved to be suitable, leading to bioactive and stable production of mFGF-2. In Phase II the expression, purification and characterization of FGFBP1, as the other key partner in the FGF-2/ HS/ FGFBP1 system is detailed. As FGFBP1 exhibits a complex tertiary structure, comprised of five highly conserved disulfide bonds and presumably multiple glycosylation sites, a eukaryotic expression was used. Human embryonic kidney cells (HEK 293F) as suspension cells were transiently transfected with DNA-PEI complexes, leading to expression of Fc-tagged murine FGFBP1. Different PEI to DNA ratios and expression durations were investigated for optimal expression yields, which were confirmed by western blot analysis and SDS-PAGE. LC-MS/MS analysis of trypsin and elastase digested FGFBP1 gave first insights of the three O-glycosylation sites. Furthermore, the binding protein was modified by inserting a His6-tag between the Fc-tag (for purification) and the binding protein itself to enable later complexation with radioactive 99mTc as radio ligand to track bio distribution of administered FGFBP1 in mice. Overall, expression, purification and characterization of mFGFBP1 variants were successful with a minor draw back of instability of the tag free binding protein. Combining the insights and results of expressed FGF-2 as well as FGFBP1 directed us to the investigation of the interaction of each partner in the FGF-2/ HS/ FGFBP1 system as Phase III. Thermodynamic behavior of FGF-2 and low molecular weight heparin (enoxaparin), as a surrogate for HS, under physiological conditions (pH 7.4) and pathophysiological conditions, similar to hypoxic, tumorous conditions (acidic pH) were monitored by means of isothermal titration calorimetry. Buffer types, as well as the pH influences binding parameters such as stoichiometry (n), enthalpy (ΔH) and to some extent the dissociation constant (KD). These findings paved the way for kinetic binding investigations, which were performed by surface plasmon resonance assays. For the first time the KD of full length FGFBP1 and FGF-2 was measured. Furthermore the binding behavior of FGF-2 to FGFBP1 in the presence of various heparin concentrations suggest a kinetic driven release of bound FGF-2 by its chaperone FGFBP1. Having gathered multiple data on the FGF-2 /HS /FGFBP1 system mainly in solution, our next step in Phase IV was the development of a test system for immobilized proteins. With the necessity to better understand and monitor the cellular effects of immobilized growth factors, we decorated glass slides in a site-specific manner with an RGD-peptide for adhesion of cells and via the copper(I)-catalyzed-azide-alkyne cycloaddition (CuAAC) a fluorescent dye (a precursor for modified proteins for click chemistry). Human osteosarcoma cells were able to grow an the slides and the fluorescence dye was immobilized in a biocompatible way allowing future thorough bioactivity assay such as MTT-assays and phospho-ERK-assays of immobilized growth factors.}, subject = {Fibroblastenwachstumsfaktor}, language = {en} }