@article{GrilliLutzParodi1987, author = {Grilli, S. and Lutz, Werner K. and Parodi, S.}, title = {Possible implications from results of animal studies in human risk estimations for benzene: nonlinear dose-response relationship due to saturation of metabolism}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60936}, year = {1987}, abstract = {To date, all risk assessment studies on benzene have been based almost exclusively on epiderniological data. Wehave attempted a more integrated and quantitative evaluation of carcinogenic risk for hurnans, trying to utilize, in addition to the epidemiological data, all data available, specifically data on metabolism, genotoxicity, and carcinogenicity in small rodents. An integrated evaluation of the globality of the available data seems to suggest a progressive saturation of metabolic capacity both for man and rodents between 10 and 100 ppm. The most susceptible target cells seem tobe different in humans (predominant induction of myelogenous leukemia) and small rodents (induction of a wide variety of tumors). Nevertheless, both epidemiological and experimental carcinogenicity data tend to indicate a flattening ofthe response for the highest dosages, again suggesting a general Saturation of mechanisms of metabolic activation, extended to different target tissues. From a quantitative point of view, the data suggest a carcinogenic potency at 10 ppm two to three times higher than that computable by a linear extrapolation from data in the 100 ppm range. These observations are in accord with the recent proposal of the European Economic Community of reducing benzene time-weighted average occupationallevels from 10 to 5 ppm.}, subject = {Toxikologie}, language = {en} } @article{ShephardSchlatterLutz1987, author = {Shephard, S. E. and Schlatter, C. and Lutz, Werner K.}, title = {Assessment of the risk of formation of carcinogenic N-nitroso compounds from dietary precursors in the stomach}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60925}, year = {1987}, abstract = {A literature review has shown that the daily intakes of various N -nitroso-precursor classes in a typical European diet span five orders of magnitude. Amides in the form of protein, and guanidines in the form of creatine and creatinine, are the nitrosatable groups found most abundantly in the diet, approaching Ievels of 100 g/day and 1 gjday, respectively. Approximately 100 mg of primary amines and amino acids are consumed daily, whereas aryl amines, secondary amines and ureas appear to lie in the 1-10 mg range. The ease of nitrosation of each precursor was estimated, the reactivities being found to span seven orders of magnitude, with ureas at the top and amines at the bottom of the scale. From this infonnation and an assessment of the carcinogenicity of the resulting N-nitroso derivatives, the potential health risk due to gastric in vivo nitrosation was calculated. The combined effects of these risk variables were analysed using a simple mathematical model: Risk = [daily intake of precursor] x [gastric concentration of nitrite]\(^n\) x [nitrosatability rate constant} x [carcinogenicity of derivative]. The risk estimates for the various dietary components spanned nine orders of magnitude. Dietary ureas and aromatic amines combined with a high nitrite burden could pose as great a risk as the intake of preformed dimethylnitrosamine in the diet. In contrast, the risk posed by the in vivo nitrosation of primary and secondary amines is probably negligib1y small. The risk contribution by amides (including protein), guanidines and primary amino acids is intermediate between these two extremes. Thus three priorities for future work are a comprehensive study of the sources and Ievels of arylamines and ureas in the diet, determination of the carcinogenic potencies of key nitrosated products to replace the necessarily vague categories used so far, and the development of short-term in situ tests for studying the alkylating power or genotoxicity of N-nitroso compounds too unstable for inclusion in long-term studies.}, subject = {Toxikologie}, language = {en} } @article{BoeschFriederichLutzetal.1987, author = {B{\"o}sch, R. and Friederich, U. and Lutz, Werner K. and Brocker, E. and Bachmann, M. and Schlatter, C.}, title = {Investigations on DNA binding in rat liver and in Salmonella and on mutagenicity in the Ames test by emodin, a natural anthraquinone}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60913}, year = {1987}, abstract = {Emodin (1,6,8-trihydroxy-3-methylanthraquinone), an important aglycone found in natural anthraquinone glycosides frequently used in Iaxative drugs, was mutagenic in the Salmonellajmammalian microsome assay (Ames test) with a specificity for strain TA1537. The mutagenic activity was activationdependent with an optimal amount of S9 from Aroclor 1254-treated male Sprague-Dawley rats of 20\% in the S9 mix (v jv) for 10 p.g emodin per plate. Heat inactivation of the S9 for 30 min at 60 ° C prevented mutagenicity. The addition of the cytochrome P-448 inhibitor 7,8-benzoflavone (18.5 nmoles per plate) reduced the mutagenic activity of 5.0 p.g emodin per plate to about one third, whereas the P-450 inhibitor metyrapone (up to 1850 nmoles per plate) was without effect. To test whether a metabolite" binds covalently to Salmonella DNA, [10-\(^{14}\)C]emodin was radiosynthesized, large batches of bacteria were incubated with [10-\(^{14}\)C]emodin and DNA was isolated. [G- \(^{3}\)H]Aflatoxin B1 (AFB1) was used as a positive control mutagen known to act via DNA binding. DNA obtained after aflatoxin treatment could be purified to constant specific activity. With emodin, the specific activity of DNA did not remain constant after repeated precipitations so that it is unlikely that the mutagenicity of emodin is due to covalent interaction of a metabolite with DNA. The antioxidants vitamin C and E or glutathione did not reduce the mutagenicity. Emodin was also negative with strain TA102. Thus, oxygen radicals are probably not involved. When emodin was incubated with S9 alone for up to 50 h before heat-inactivation of the enzymes and addition of bacteria, the mutagenic activity did not decrease. It is concluded that the mutagenicity of emodin is due to a chemically stable, oxidized metabolite forming physico-chemical associations with DNA, possibly of the intercalative type. In order to check whether an intact mammalian organism might be able to activate emodin to a DNA-binding metabolite, radiolabelled emodin was administered by oral gavage to male SD rats and liver DNA was isolated after 72 h. Very little radioactivity was associated with the DNA. Considering that DNA radioactivity could also be due to sources other than covalent interactions, an upper limit for the · covalent binding index, CBI = (p.moles chemical bound per moles DNA nucleotides)/(mmoles chemical administered per kg body weight) of 0.5 is deduced. This is 104 times below the CBI of AFB1. The demonstration of a lack of covalent interaction with DNA bothin Salmonellaandin rat liver is discussed in terms of a reduced hazard posed by emodin as a mutagenic drug in use in humans.}, subject = {Toxikologie}, language = {en} } @article{BuesserLutz1987, author = {B{\"u}sser, M. T. and Lutz, Werner K.}, title = {Stimulation of DNA synthesis in rat and mouse liver by various tumor promoters}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60908}, year = {1987}, abstract = {In order to investigate whether the Stimulation of liver DNA synthesis might be used to detect one class of hepatic tumor promoters, the incorporation of orally administered radiolabelled thymidine into liver DNA was detennined in rats and mice 24 h after a single oral gavage of test compounds at various dose Ievels. Three DNA-binding hepatocarcinogens, aflatoxin B1; benzidine and carbon tetrachloride, did not stimulate but rather inhibited DNA synthesis (not for CCla). Four hepatic tumor promoters, clofibrate, DDT, phenobarbital and thioacetamide, gave rise to a Stimulation in a dosedependent manner. Single oral doses between 0.02 and 0.3 mmol/kg were required to double the level of thymidine incorporation into liver DNA (= doubling dose, DD). Differentes between species or sex as obsprved in long-term carcinogenicity studies were reflected by a different stimulation of liver DNA synthesis. In agreement with the bioassay data, aldrin was positive only in male mice (DD = 0.007 mmol/kg) but not in male rats or female mice. 2,3, 7,8-TCDD was positive in male mice (DD = 10\(^{-6}\) mmol/kg) andin female rats (DD = 2 x 10\(^{-6}\) mmol/kg) but not in male rats. The assay was also able to distinguish between structural isomers with different carcinogenicities. [alpha]Hexachlorocyclohexane stimulated Iiver DNA synthesis with a doubling dose of about 0.2 mmol/kg in male rats whereas the [gamma]isomer was ineffective even at l mmol/kg. So far, only one result was inconsistent with carcinogenicity bioassay data. The different carcinogenicity of di(2-ethylhexyl)adipate (negative in rats) and di(2-ethylhe.xyl)phthalate (positive) was not detectable. 8oth plasticizers were positive in.this short-term system with DD's of 0. 7 mmol/kg for DEHA and 0.5 mmol/kg for DEHP. The proposed assay is discussed as an attempt to devise short-term assays for carcinogens not detected by the routine genotoxicity test systems.}, subject = {Toxikologie}, language = {en} } @article{LutzDeuberCaviezeletal.1988, author = {Lutz, Werner K. and Deuber, R. and Caviezel, M. and Sagelsdorff, P. and Friederich, U. and Schlatter, C.}, title = {Trenbolone growth promotant: covalent DNA binding in rat liver and in Salmonella typhimurium, and mutagenicity in the Ames test}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60897}, year = {1988}, abstract = {DNA binding in vivo: (6,7-\(^3\)H]ß-trenbolone (ß-TBOH) was administered p.o. and i.p. to rats. After 8 or 16 h, DNA was isolated from the livers and purified to constant specific radioactivity. Enzymatic digestion to deoxyribonucleotides and separation by HPLC revealed about 90\% ofthe DNA radioactivity eluting in the form of possible TBOH-nucleotide adducts. The extent of this genotoxicity, expressed in units of the Covalent Binding Index, CBI = (~mol TBOH bound per mol nucleotide)/(mmol TBOH administered per kg body weight) spanned from 8 t~ 17, i. e. was in the range found with weak genotoxic carcmogens. Ames test: low doses of ß-TBOH increased the number of revertants in Salmonella strain TAl 00 reproducibly and m a dose-dependent manner. The mutagenic potency was 0.2 revertants per nmol after preincubation of the bacteria (20 min at 37° C) with doses between 30 and 60 \(\mu\)g per plate (47 and 94 \(\mu\)g/ml preincubation mixture). Above this dose, the number of revertants decreased to control values, accompanied by a reduction in survival. The addition of rat liver S9 inhibited the mutagenicity. DNA binding in vitro: calf thymus DNA was incubated with tritiated ß-TBOH with and without rat liver S9 Highest DNA radioactivities were determined in the absence of the "activation" system. Addition of inactive S9 (without cofactors) reduced the DNA binding by a factor of up to 20. Intermediate results were found with active S9. DNA binding in Salmonella: ß-TBOH was irreversibly bound to DNA isolated from S. typhimurium TA100 after incubation of bacteria with [\(^3\)H]ß-TBOH. Conclusions: Covalent DNA binding appears to be the mechanism of an activation-independent ("direct") mutagenicity of TBOH which is not easily detected because of the bactericidal activity. The genotoxicity risk arising from exposure of humans to trenbolone residues in meat was estimated using the in vivo data and compared to that from the exposure to unavoidable genotoxins aflatoxin B1 and dimethylnitrosamine. It ts concluded that trenbolone residues represent only a low genotoxic risk.}, subject = {Toxikologie}, language = {en} } @article{LutzMaier1988, author = {Lutz, Werner K. and Maier, P.}, title = {Genotoxic and epigenetic chemical carcinogenesis: one process, different mechanisms}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60884}, year = {1988}, abstract = {Chemieals that induce cancer in an intact organism are called carcinogens. This term does not differentiale between their various modes of action. In this review, Werner Lutz and Peter Maier make a mechanistic distinction between carcinogens that alter the genetic information and carcinogens that interfere with epigenetic processes. They considercardnogenesis tobe an ongoing, part1y unavoidable process which is based on a succession of mutations, most likely in stem cells, leading to autonomaus cellular growth regulation. Chemical carcinogens either induce such changes through mutations (genotoxic carcinogens) or they aceeierate the accumulation of critica1 spontaneaus mut11tions (epigenetic carcinogens). Examples are given for both classes of carcinogens, and for the processes that act at genoto:tic/nuclear 11nd epigenetic/mitotic Ievels.}, subject = {Toxikologie}, language = {en} } @article{SagelsdorffLutzSchlatter1988, author = {Sagelsdorff, P. and Lutz, Werner K. and Schlatter, C.}, title = {DNA methylation in rat liver by daminozide, 1,1-dimethylhydrazine, and dimethylnitrosamine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60875}, year = {1988}, abstract = {DNA Methylation in Rat Li ver by Daminozide, 1, 1-Dimethylhydrazine, and Dimethylnitrosamine. SAGELSDORFF, P., LUTZ, W. K., AND ScHLAITER C. (1988). Fundam. Appl. Toxico/. 11, 723-730. [methyP4C]Daminozide (succinic acid 2',2'-dimethylhydrazide; 37 mgjkg), l,l( 14C]dimethylhydrazine (UDMH; 19 mgtkg), and (14C]dimethylnitrosamine (DMNA; 0.1 mg/ kg) were administered by oral gavage to male Sprague-Dawley rats. After 24 hr, the animals were killed and DNA was purified from the livers to constant specific radioactivity. After enzymatic degradation of the DNA to the 3'-deoxynucleotides the Ievel of DNA methylation was determined by HPLC analysis. Radiolabeled 7-methylguanine (7mG) was identified by cochromatography with unlabeled 7mG added as standard after acidic depurination of DNA and HPLC analysis ofpurines and apurinic acid. All three compounds were found to methylate DNA. The relative potencies were 1:47:4900 for daminozide:UDMH:DMNA. With [methyPH]UDMH, the formation of7mG was investigated as a function of dose administered, at 20, 2, and 0.2 mgj kg. The methylation ofDNA was strictly proportional to the dose. The data were used to compare the Ievel of DNA alkylation derived from residues of daminozide and UDMH in treated apple with the genotoxicity of the intake of N-nitroso compounds in Germany and Japan. It is estimated that these residues could Iead to a DNA methylation in the Ii ver of about 6\% of an average exposure to DMNA}, subject = {Toxikologie}, language = {en} } @article{HegiSagelsdorffLutz1989, author = {Hegi, M.E. and Sagelsdorff, P. and Lutz, Werner K.}, title = {Detection by \(^{32}\)P-postlabeling of thymidine glycol in gamma-irradiated DNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60863}, year = {1989}, abstract = {No abstract available}, subject = {Toxikologie}, language = {en} } @article{KuglerSteigmeierFriederichGrafetal.1989, author = {Kugler-Steigmeier, M. E. and Friederich, U. and Graf, U. and Lutz, Werner K. and Maier, P. and Schlatter, C.}, title = {Genotoxicity of aniline derivatives in various short-term tests}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60857}, year = {1989}, abstract = {Various substituted aniline derivatives were tested for genotoxicity in several short-term tests in order to examine the hypothesis that a Substitution at both ortho positions (2,6-disubstitution) could prevent genotoxicity due to steric hindrance of an enzymatic activation to electrophilic intermediates. In the Salmonellajmicrosome assay, 2,6-dialkylsubstituted anilines and 2,4,6-trimethylaniline (2,4,6-TMA) were weakly mutagenic in strain TA100 when 20\% S9 mixwas used, although effects were small compared to those of 2,4-dimethylaniline and 2,4,5-trimethylaniline (2,4,5-TMA). In Drosophila me/anogaster, however, 2,4,6-TMA and 2,4,6-trichloroaniline (TCA) were mutagenic in the wing spottestat 2-3 times lower doses than 2,4,5-TMA. In the 6-thioguanine resistance test in cultured fibroblasts, 2,4,6-TMA was again mutagenic at lower doses than 2,4,5-TMA. Two methylene-bis-aniline derivatives were also tested with the above methods: 4,4'-methylene-bis-(2-chloroaniline) (MOCA) was moderately genotoxic in al1 3 test systems whereas 4,4'-methylene-bis-(2-ethyl-6-methylaniline) (MMEA) showed no genotoxicity at all. DNA binding sturlies in rats, however, revealed that both MOCA and MMEA produced DNA adducts in the liver at Ievels typically found for moderately strong genotoxic carcinogens. These results indicate that the predictive value of the in vitro test systems and particularly the Salmonellajmicrosome assay is inadequate to detect genotoxicity in aromatic amines. Genotoxicity seems to be a general property of aniline derivatives and does not seem to be greatly influenced by substitution at both ortho positions.}, subject = {Toxikologie}, language = {en} } @misc{ParodiLutzColaccietal.1989, author = {Parodi, S. and Lutz, Werner K. and Colacci, A. and Mazzullo, M. and Taningher, M. and Grilli, S.}, title = {Results of animal studies suggest a nonlinear dose-response relationship for benzene effects}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60843}, year = {1989}, abstract = {Considering the very large industrial usage of benzene, studies in risk assessment aimed at the evaluation of carcinogenic risk at low Ievels of exposure are important. Animal data can offer indications about what could happen in humans and provide more diverse information than epidemiological data with respect to doseresponse consideration. We have considered experiments investigating metabolism, short·term genotoxicity tests, DNA adduct formation, and carcinogenicity long-term tests. According to the different experiments, a Saturation of benzene metabolism and benzene effects in terms of genotoxicity seems evident above 30 to 100 ppm. Below 30 to 60 ppm the initiating effect ofbenzene seems tobe linear fora large intervaJ ofdosages, at least judging from DNA adduct formation. Potentiallack of a promoting effect of benzene (below 10 ppm) could generate a sublinear response at nontox.ic levels of ex.posure. This possibility was suggested by epidemiological data in humans and is not confirmed or excluded by our observations with animals.}, subject = {Toxikologie}, language = {en} }