@article{Scheer1972, author = {Scheer, Ulrich}, title = {The ultrastructure of the nuclear envelope of amphibian ooctyes: IV. On the chemical nature of the nuclear pore complex material}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39500}, year = {1972}, abstract = {In order to investigate the chemical composition of the nuclear pore complexes isolated nuclei from mature Xenopus laevis oocytes were manually fractioned into nucleo· plasmic aggregates and the nuclear envelopes. The whole isolation procedure takes no more than 60- 90 sec, and the pore complexes of the isolated envelopes are well preserved as demonstrated by electron microscopy. Minor nucleoplasmic and cytoplasmic contaminations associated with the isolated nuclear envelopes were determined with electron microscopic morphometry and were found to be quantitatively negligible as far as their mass and nucleic acid content is concerned. The RNA content of the fractions was determined by direct phosphorus analysis after differential alkaline hydrolysis. Approximately 9\% of the total nuclear RNA of the mature Xenopus egg was found to be attached to the nuclear envelope. The nonmembranous elements of one pore complex contain 0.41 X 10- 16 g RNA. This value agrees well with the content estimated from morphometric data. The RNA package density in the pore complexes (270 X 10- 15 g/fJ-3) is compared with the nucleolar, nucleoplasmic and cytoplasmic RNA concentration and is discussed in context with the importance of the pore complexes for the nucleo-cytoplasmic transport of RNA-containing macromolecules. Additionally, the results of the chemical analyses as well as of the 3H-actinomycin D autoradiography and of the nucleoprotein staining method of Bernhard (1969) speak against the occurence of considerable amounts of DNA in the nuclear pore complex structures.}, language = {en} } @article{FrankeKartenbeckKrienetal.1972, author = {Franke, Werner W. and Kartenbeck, J{\"u}rgen and Krien, S. and VanderWoude, W. J. and Scheer, Ulrich and Morr{\´e}, D. J.}, title = {Inter- and intracisternal elements of the Golgi apparatus: A system of membrane-to-membrane cross-links}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39514}, year = {1972}, abstract = {Electron opaque cross-bridge structures span the inter- and intracisternal spaces and provide membrane-to-membrane connections between adjacent cisternae of dictyosomes of pollen tubes of Clivia and Lilium. Additionally, the classic intercisternal rods, characteristic of intercisternal regions near the maturing face of dictyosomes, are connected with the adjacent membranes through similar cross-bridge elements. We suggest that these structural links are responsible for maintaining the flattened appearance of the central parts of Golgi apparatus cisternae as well as for the coherence of cisternae within the stack. Observations on other plant (e.g. microsporocytes of Canna) and animal cells (e.g. rodent liver and hepatoma cells, newt spermatocytes) show that such an array of membrane cross-links is a universal feature of Golgi apparatus architecture. The cross-bridges appear as part of the complex "zone of exclusion" which surrounds dictyosomes, entire Golgi apparatus and Golgi apparatus equivalents in a variety of cell types.}, language = {en} } @article{ScheerKartenbeckTrendelenburgetal.1976, author = {Scheer, Ulrich and Kartenbeck, J{\"u}rgen and Trendelenburg, Michael F. and Stadler, Joachim and Franke, Werner W.}, title = {Experimental disintegration of the nuclear envelope: evidence for pore-connecting fibrils}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39735}, year = {1976}, abstract = {The disintegration of the nuclear envelope has been examined in nuclei and nuclear envelopes isolated from amphibian oocytes and rat liver tissue, using different electron microscope techniques (ultrathin sections and negatively or positively stained spread preparations). Various treatments were studied, including disruption by surface tension forces, very low salt concentrations, and non ionic detergents such as Triton X-lOO and Nonidet P-40. The high local stability of the cylinders of nonmembranous pore complex material is emphasized. As progressive disintegration occurred in the membrane regions, a network of fibrils became apparent which interconnects the pore complexes and is distinguished from the pore complexassociated intranuclear fibrils. This network might correspond to an indistinct lamella, about 15 - 20 nm thick, located at the level of the inner nuclear membrane, which is recognized in thin sections to bridge the interpore distances. With all disintegration treatments a somewhat higher susceptibility of the outer nuclear membrane is notable, but a selective removal does not take place. Final stages of disintegration are generally characterized by the absence of identifiable, membrane- like structures. Analysis of detergent-treated nuclei and nuclear membrane fractions shows almost complete absence of lipid components but retention of significant amount of glycoproteins with a typical endomembrane-type carbohydrate pattern. Various alternative interpretations of these observations are discussed. From the present observations and those of Aaronson and Blobel (1,2), we favor the notion that threadlike intrinsic membrane components are stabilized by their attachment to the pore complexes, and perhaps also to peripheral nuclear structures, and constitute a detergent-resistant, interpore skeleton meshwork.}, language = {en} } @article{TrendelenburgScheerFranke1973, author = {Trendelenburg, Michael F. and Scheer, Ulrich and Franke, W. W.}, title = {Structural organization of the transcription of ribosomal DNA in oocytes of the house cricket}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33113}, year = {1973}, abstract = {No abstract available}, language = {en} } @article{ScheerRaska1987, author = {Scheer, Ulrich and Raska, I.}, title = {Immunocytochemical localization of RNA polymerase I in the fibrillar centers of nucleoli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39618}, year = {1987}, abstract = {No abstract available}, language = {en} } @article{FischerHockScheer1993, author = {Fischer, Dagmar and Hock, Robert and Scheer, Ulrich}, title = {DNA Topoisomerase II is not detectable on lampbrush chromosomes but enriched in the amplified nucleoli of xenopus oocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32654}, year = {1993}, abstract = {In somatic cells DNA topoisomerase II (topo II) is thought to be involved in the domain Organization of the genome by anchoring the basis of chromatin loops to a chromosomal scafFold. Lampbrush chromosomes of am-phibian oocytes directly display this radial loop Organization in cytological preparations. In order to find out whether topo II may play a role in the Organization of these meiotic chromosomes, we performed immunofluorescence studies using antibodies against Xenopus topo II. Our results indicate that topo II is apparently absent from lampbrush chromosomes and is hence unlikely to act as a "fastener" of the numerous lateral chromosomal loops. Topo II was, however, enriched in the amplified nucleoli of Xenopus oocytes.}, language = {en} } @article{FrankeScheer1972, author = {Franke, Werner W. and Scheer, Ulrich}, title = {Structural details of dictyosomal pores}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32155}, year = {1972}, abstract = {Structural details of the dictyosomal pores in several plant cell types are described from tangential and cross sections of Golgi cisternae. Frequency distributions of the sizes of such Golgi pores are given and compared with the corresponding values of nuclear pores in the same cells. Golgi pore inner diameters are less homogeneously distributed and can be as small as 100 A or less. They are not simply cisterna I holes, but are often associated with centrally located electron dense granules or rods and with inner pore filaments. This organization, which is very common in dictyosomal pores in plant and animal cells, has some similarities with the structural architecture of nuclear envelope and annulate lamellar pore complexes. The particulate material associated with the dictyosomal pores shows spatial and structural relationship to cytoplasmic ribosomes. Possible modes of Golgi pore formation and some consequences of these observations for interpretation of nuclear pore structures are discussed.}, language = {en} } @article{FrankeScheerSpringetal.1976, author = {Franke, Werner W. and Scheer, Ulrich and Spring, Herbert and Trendelenburg, Michael F. and Krohne, G.}, title = {Morphology of transcriptional units of rDNA: evidence for transcription in apparent spacer intercepts and cleavages in the elongating nascent RNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39681}, year = {1976}, abstract = {Several types of "irregular" structures in the arrangement of lateral fibrils were noted in electron microscopic preparations of transcriptionally active nucleolar chromatin from various plant and animal cells. Such forms include: I. Disproportionately long lateral fibrils which occur either as individual fibrils or in groups; 2. "Prelude complexes" and other arrangements of lateral fibrils in apparent spacer intercepts; 3. Thickening of the rDNA chromatin axis at the starting end of pre-rRNA matrix units; 4. Extremely long matrix units , the length of which exceeds that of the rDNA (double-strand) sequence complementary to the specific pre-rRN A (for abbreviations see text). In addition, the stability of high molecular weight RNAs contained in the nucleolar ribonucleoproteins during the preparation for electron microscopy was demonstrated by gel electrophoresis. The observations indicate that the morphological starting point of a pre-rRNA matrix unit is not necessarily identical with the initiation site for synthesis of pre-rRNA, but they rather suggest that the start of the transcriptional unit is located at least O.2-D.8 JLm before the matrix unit and that parts of the "apparent spacer" are transcribed. It is proposed that the pre-rRN A molecules do not represent the primary product of rDNA transcription but rather relatively stable intermediate products that have already been processed during transcription.}, language = {en} } @article{BringmannZagstSchoeneretal.1991, author = {Bringmann, Gerhard and Zagst, Rainer and Sch{\"o}ner, Bernd and Busse, Holger and Hemmerling, Martin and Burschka, Christian}, title = {Acetogenic Isoquinoline Alkaloids. XXIII. Structure of the Naphthyl Isoquinoline Alkaloid Dioncophylline A}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31331}, year = {1991}, abstract = {No abstract available}, subject = {Chemie}, language = {en} } @article{ScheerSommervilleMueller1980, author = {Scheer, Ulrich and Sommerville, John and M{\"u}ller, Ulrike}, title = {DNA is assembled into globular supranucleosomal chromatin structures by nuclear contents of amphibian oocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39671}, year = {1980}, abstract = {The assembly of DNA into nucleosomal and supranucleosomal chromatin structures has been studied (i) by injection of circular DNA molecules (plasmids) into nuclei of Pleurodeles waltlii oocytes; and (ii) by in vitro incubation of plasmid molecules with the supernatant fraction from oocyte nuclei of Pleurodeles and Xenopus laevis, followed by purification of nucleoprotein structures formed with sucrose gradient centrifugation. [n both types of experiments , spread preparations of the newly assembled and transcriptionally inactive chromatin , examined by electron microscopy , show dense globular higher order (supranucleosomal) packing forms. Under partially relaxing (low salt) preparation conditions granular chromatin subunits of about 30 nm diameter can be seen either as widely spaced particles or in closely packed aggregates. The transcriptionally inactive endogenous chromatin of chromomeres of lampbrush chromosomes is arranged in similar higher order chromatin units. A correlation is found between the sizes of the DN A molecule probes used and the numbers of nucleosomes and higher order globules in the assembled chromatin structures. After prolonged dispersion in low salt buffers , these globular chromatin units unfold into chains of7-12 nucleosomes. The results support the concept that chromatin is arranged , under physiological ion concentrations as they are present in the nucleus , in supranucleosomal units of globular morphology.}, language = {en} }