@article{ReddingtonKlotzLohseetal.1989, author = {Reddington, M. and Klotz, Karl-Norbert and Lohse, M. J. and Hietel, B.}, title = {Radiation inactivation analysis of the A\(_1\) adenosine receptor: decrease in radiation inactivation size in the presence of guanine nucleotide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60318}, year = {1989}, abstract = {Radiation inactivation analysis of the binding of the A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine to rat brain membranes yielded a radiation inactivation size of 58 kDa. In the presence of GTPyS this was reduced to 33 kDa, in good agreement with the size of the ligand-binding subunit detected after photoaffinity labelling. The data indicate that the structural association of A\(_1\) adenosine receptors with G-protein components is altered in situ in the presence of guanine nucleotides.}, subject = {Toxikologie}, language = {en} } @inproceedings{SagelsdorffLutz1987, author = {Sagelsdorff, P. and Lutz, Werner K.}, title = {Sensitivity of DNA and nucleotides to oxidation by permanganate and hydrogen peroxide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-80062}, year = {1987}, abstract = {no abstract available}, subject = {Toxikologie}, language = {en} } @article{SagelsdorffLutzSchlatter1983, author = {Sagelsdorff, P. and Lutz, Werner K. and Schlatter, C.}, title = {The relevance of covalent binding to mouse liver DNA to the carcinogenic action of hexachlorocyclohexane isomers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61039}, year = {1983}, abstract = {[\(^3\)H]Hexachlorocyclohexane (HCH) was synthesized by chlorination of [\(^3\)H]benzene prepared by catalytic tritiation of benzene with tritiated water. The isomers of HCH were separated by adsorption chromatography on silica gel. In order to determine the covalent binding to DNA, [\(^3\)H]HCH was administered to male mice by oral gavage, and liver DNA was isolated via cbromatin. The specific radioactivity of the DNA was nonnalized by the dose administered and expressed in the molar units of the Covalent binding index, CBI = DNA damage/dose = (\(\mu\)mol bound HCH/mol DNA nucleotide)/(mmol HCH administered/kg body weight). CBI values of - 0.2 were found 10 h after the administration of alpha- and gamma-HCH. Enzymatic digestion of the DNA to the nucleosides and h.p.l.c. analysis revealed that - 40\% of the radioactivity co-migrated with the natural nucleosides. At elution volumes known to contain the more lipophilic carcinogen-nucleoside adducts, - 10\% of the radioactivity could be detected. The remaining 50\% of th,e radioactivity eluted with the front, representing a mixture of oligonucleotide- HCH adducts and/or hydrophilic degradation products which were strongly bot not covalently associated with intact DNA. Therefore, a true CBI of 0.02-0.1 must be expected both for alpha- and gamma-HCH. This CBI is by a factor of 10\(^5\) -10\(^6\) below the value found with the strongest DNAbinding carcinogens like aflatoxin B1 or dimethylnitrosamine and is unlikely to be decisive for the liver tumor induction in mice because of the foUowing additional findings: (i) both isomers gave rise to similar Ievels of DNA darnage although the alpha-isomer is a much morepotent tumor inducer. This similarity was seen not only at the time of m{\"a}ximum binding but up to 10 days after oral administration; (ii) three mouse strains with apparently different susceptibility to tumor induction by gamma-HCH could not be distinguished with respect to DNA binding; (iii) the level of DNA binding of alpha-HCH (CBI = 0.02-0.1) is more than three orders of magnitude lower than would be expected if the mechanism of tumor induction was by genotoxicity mediated by DNAbinding. For a preliminary investigation on a potential stimulatory effect on liver DN A replication and ceU division, [\(^{14}\)]thymidine was admlnistered i.p. 3.5 h before sacrifice of the [\(^3\)H]HCH-treated mice. The alpha-isomer was found to be more potent than the gamma-isomer in this respect. Taken together, our data allow the conclusion that the non- mutational processes must be more important for the carcinogenicity of HCH.}, subject = {Toxikologie}, language = {en} } @article{SagelsdorffLutzSchlatter1988, author = {Sagelsdorff, P. and Lutz, Werner K. and Schlatter, C.}, title = {DNA methylation in rat liver by daminozide, 1,1-dimethylhydrazine, and dimethylnitrosamine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60875}, year = {1988}, abstract = {DNA Methylation in Rat Li ver by Daminozide, 1, 1-Dimethylhydrazine, and Dimethylnitrosamine. SAGELSDORFF, P., LUTZ, W. K., AND ScHLAITER C. (1988). Fundam. Appl. Toxico/. 11, 723-730. [methyP4C]Daminozide (succinic acid 2',2'-dimethylhydrazide; 37 mgjkg), l,l( 14C]dimethylhydrazine (UDMH; 19 mgtkg), and (14C]dimethylnitrosamine (DMNA; 0.1 mg/ kg) were administered by oral gavage to male Sprague-Dawley rats. After 24 hr, the animals were killed and DNA was purified from the livers to constant specific radioactivity. After enzymatic degradation of the DNA to the 3'-deoxynucleotides the Ievel of DNA methylation was determined by HPLC analysis. Radiolabeled 7-methylguanine (7mG) was identified by cochromatography with unlabeled 7mG added as standard after acidic depurination of DNA and HPLC analysis ofpurines and apurinic acid. All three compounds were found to methylate DNA. The relative potencies were 1:47:4900 for daminozide:UDMH:DMNA. With [methyPH]UDMH, the formation of7mG was investigated as a function of dose administered, at 20, 2, and 0.2 mgj kg. The methylation ofDNA was strictly proportional to the dose. The data were used to compare the Ievel of DNA alkylation derived from residues of daminozide and UDMH in treated apple with the genotoxicity of the intake of N-nitroso compounds in Germany and Japan. It is estimated that these residues could Iead to a DNA methylation in the Ii ver of about 6\% of an average exposure to DMNA}, subject = {Toxikologie}, language = {en} } @misc{SchlatterLutz1990, author = {Schlatter, J. and Lutz, Werner K.}, title = {The carcinogenic potential of ethyl carbamate (urethane): risk assessment at human dietary exposure levels}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60826}, year = {1990}, abstract = {Ethyl carbamate is found in fermented foods: bread contains 3-15 ng/g, stone-fruit brandies 200-20,000 ngfg, and about one-third of table-wine samples analysed contained more than 10 ng/g. In animals, ethyl carbamate is degraded to C02, H20 and NH3, with intermediate formation ofethanol. This degradation has been shown tobe inhibited (postponed) in the mouse by ethanol concentrations in the blood of about 0.15\% and higher. A quantitatively minor pathway involves a two-step oxidation of the ethyl group to vinyl carbamate and epoxyethyl carbamate, the postulated electrophilic moiety that reacts with DNA. This reaction is probably the mode of the mutagenic action observed in many cellular and animal systems. The fact that only vinyl carbamate, but not ethyl carbamate, is mutagenic in a standard Ames test is probably because there is insufficient production of the intermediate oxidation product in the standard test. Consistent with this metabolism is the carcinogenic activity of ethyl carbamate in various animal species and in different organs; this activity can be seen even after a single high dose in early life. Quantitative analysis of the total tumour incidences after chronic exposure of rats and mice to 0.1-12.5 mg ethyl carbamate/kg body weightjday in the drinking-water showed a dose-related increase. The main target organs were the mammary gland (female rats and mice having similar susceptibilities) and the Jung (mice only). On the basis of sex- and organ-specific tumour data and with a linear extrapolation to a negligible increase of the lifetime tumour incidence by 0.0001\% ( one additional tumour in one mil{\"u}on individuals exposed for life), a "virtually safe dose .. of 20 to 80 ng/kg body weight/day was estimated. The daily burden reached under normal dietary habits without alcoholic beverages is in the range of about 20 ng/kg body weightfday. Regular table-wine consumption would increase the risk by a factor of up to five. Regular drinking of 20 to 40 ml stone-fruit brandy per day could raise the calculated lifetime tumour risk to near 0.01\%.}, subject = {Toxikologie}, language = {en} } @article{ShephardLutzSchlatter1994, author = {Shephard, S. E. and Lutz, Werner K. and Schlatter, C.}, title = {The lacI transgenic mouse mutagenicity assay: quantitative evaluation in comparison to tests for carcinogenicity and cytogenetic damage in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60638}, year = {1994}, abstract = {The detection Iimit of the lacl transgenic mouse mutagenicity assay lies, in practice, at approximately a 50-100\% increase in mutant frequency in treated animals over controls. The sensitivity of this assay in detecting genotoxins can be markedly improved by subchronic rather than acute application of the test compound. The lac/ transgenic mouse mutagenicity assay was compared quantitatively to rodent carcinogenicity tests and to presently used in vivo mutagenicity assays. With the genotoxic carcinogens tested thus far, a rough correlation between mutagenic potency and carcinogenic potency was observed: on average, to obtain a doubling in lacl mutant frequency the mice bad to be treated with a total dose equal to 50 times the TD50 daily dose Ievel. This total dose could be administered eilher at a high dose rate within a few days or, preferably, at a low dose rate over several weeks. This analysis also indicated that a lacl experiment using a 250-day exposure period would give a detection Iimit approximately equal to that of a long-term carcinogenicity study. In comparison to the micronucleus test or the chromosome aberration assay, acute sturlies with the presently available lacl system offered no increase in sensitivity. However, subchronic lacl sturlies (3-4-month exposure) resulted in an increase in sensitivity over the established tests by 1-2 orders of magnitude (shown with 2-acetylaminofluorene, N-nitrosomethylamine, N-nitrosomethylurea and urethane). 1t is concluded that a positive result in the lacl test can be highly predictive of carcinogenicity butthat a negative result does not provide a large margin of safety.}, subject = {Toxikologie}, language = {en} } @article{ShephardSchlatterLutz1987, author = {Shephard, S. E. and Schlatter, C. and Lutz, Werner K.}, title = {Assessment of the risk of formation of carcinogenic N-nitroso compounds from dietary precursors in the stomach}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60925}, year = {1987}, abstract = {A literature review has shown that the daily intakes of various N -nitroso-precursor classes in a typical European diet span five orders of magnitude. Amides in the form of protein, and guanidines in the form of creatine and creatinine, are the nitrosatable groups found most abundantly in the diet, approaching Ievels of 100 g/day and 1 gjday, respectively. Approximately 100 mg of primary amines and amino acids are consumed daily, whereas aryl amines, secondary amines and ureas appear to lie in the 1-10 mg range. The ease of nitrosation of each precursor was estimated, the reactivities being found to span seven orders of magnitude, with ureas at the top and amines at the bottom of the scale. From this infonnation and an assessment of the carcinogenicity of the resulting N-nitroso derivatives, the potential health risk due to gastric in vivo nitrosation was calculated. The combined effects of these risk variables were analysed using a simple mathematical model: Risk = [daily intake of precursor] x [gastric concentration of nitrite]\(^n\) x [nitrosatability rate constant} x [carcinogenicity of derivative]. The risk estimates for the various dietary components spanned nine orders of magnitude. Dietary ureas and aromatic amines combined with a high nitrite burden could pose as great a risk as the intake of preformed dimethylnitrosamine in the diet. In contrast, the risk posed by the in vivo nitrosation of primary and secondary amines is probably negligib1y small. The risk contribution by amides (including protein), guanidines and primary amino acids is intermediate between these two extremes. Thus three priorities for future work are a comprehensive study of the sources and Ievels of arylamines and ureas in the diet, determination of the carcinogenic potencies of key nitrosated products to replace the necessarily vague categories used so far, and the development of short-term in situ tests for studying the alkylating power or genotoxicity of N-nitroso compounds too unstable for inclusion in long-term studies.}, subject = {Toxikologie}, language = {en} } @article{ShephardSengstagLutzetal.1993, author = {Shephard, S. E. and Sengstag, C. and Lutz, Werner K. and Schlatter, C.}, title = {Mutations in liver DNA of lacI transgenic mice (Big Blue) following subchronic exposure to 2-acetylaminofluorene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60683}, year = {1993}, abstract = {2-Acetylaminofluorene (2-AAF) was administered at Ievels of 0, 300 and 600 ppm in the diet for 28 days to female transgenic micc bearing the lacl genein a Iambda vector (Big Blue® mice). The Iambda vector was excised from liver DNA and packaged in vitro into bacteriophage particles which were allowed to infect E. coli bacteria, forming plaques on agar plates. Approximately 10\(^5\) plaques wcre screened per animal for the appearance of a bluc colour, indicative of mutations in the lac/ gcnc which had resulted in an inactive gene product. Background mutation rate was 2.7 x 10\(^{-5}\) (pooled results of two animals, 8 mutant plaques/289 530 plaques). At 300 ppm in the diet, the rate of 3.5 X 10\(^{-5}\)(8/236 300) was not significantly increased over background. At 600 ppm in the dict, the rate increased approximately 3 fold to 7.7 x 10\(^{-5}\) (17 /221240). In comparison to the usual single or 5-day carcinogen exposure regimes, the 4-week exposure protocol allowed the use of much lower dose Ievels 00-1000 fold lower). Overt toxicity could thus be avoided. The daily doses used were somewhat higher than those required in 2-year carcinogenicity studies with 2·AAF.}, subject = {Toxikologie}, language = {en} } @phdthesis{Sieber2009, author = {Sieber, Maximilian}, title = {Evaluation of 1H-NMR and GC/MS-based metabonomics for the assessment of liver and kidney toxicity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-43052}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {For the assessment of metabonomics techniques for the early, non-invasive detection of toxicity, the nephrotoxins gentamicin (s.c. administration of 0, 60 and 120 mg/kg bw 2x daily for 8 days), ochratoxin A (p.o. administration of 0, 21, 70 and 210 µg/kg bw 5 days/week for 90 days) and aristolochic acid (p.o. administration of 0, 0.1, 1.0 and 10 mg/kg bw for 12 days) were administered to rats and urine samples were analyzed with 1H-NMR and GC/MS. Urine samples from the InnoMed PredTox project were analyzed as well, thereby focusing on 1H-NMR analysis and bile duct necrosis as histopathological endpoint. 1H-NMR analysis used water supression with the following protocol: 1 M phosphate buffer, D2O as shift lock reagent, D4-trimethylsilyl­propionic acid as chemical shift reference, noesygppr1d pulse sequence (Bruker). For multivariate data analysis, spectral intensity was binned into 0.04 ppm wide bins. GC/MS analysis of urine was carried out after protein precipitation with methanol, drying, derivatization with methoxyamine hydrochloride in pyridine and with methyl(trimethylsilyl)­trifluoroacetamide on a DB5-MS column using EI ionization. The chromatograms were prepared for multivariate data analysis using the R-program based peak picking and alignment software XCMS version 2.4.0. Principal component analysis (PCA) to detect and visualize time-point and dose-dependent differences between treated animals and controls and orthogonal projection to latent structures discriminant analysis (OPLS-DA) for identification of potential molecular markers of toxicity was carried out using SIMCA P+ 11.5 1H-NMR-based markers were identified and quantified with the Chenomx NMR Suite, GC/MS based markers were identified using the NIST Mass Spectral Database and by co-elution with authentic reference standards. PCA of urinary metabolite profiles was able to differentiate treated animals from controls at the same time as histopathology. An advantage over classical clinical chemistry parameters regarding sensitivity could be observed in some cases. Metabonomic analysis with GC/MS and 1H-NMR revealed alterations in the urinary profile of treated animals 1 day after start of treatment with gentamicin, correlating with changes in clinical chemistry parameters and histopathology. Decreased urinary excretion of citrate, 2-oxoglutarate, hippurate, trigonelline and 3-indoxylsulfate increased excretion of 5-oxoproline, lactate, alanine and glucose were observed. Ochratoxin A treatment caused decreased excretion of citrate, 2-oxoglutarate and hippurate and and increased excretion of glucose, myo-inositol, N,N-dimethylglycine, glycine, alanine and lactate as early as 2 weeks after start of treatment with 210µg OTA/kg bw, correlating with changes in clinical chemistry parameters and histopathology. Integration of histopathology scores increased confidence in the molecular markers discovered. Aristolochic acid treatment resulted in decreased urinary excretion of citrate, 2-oxoglutarate, hippurate and creatinine as well as increased excretion of 5-oxoproline, N,N-dimethylglycine, pseudouridine and uric acid. No alterations in clinical chemistry parameters or histopathology were noted.Decreased excretion of hippurate indicates alterations in the gut microflora, an effect that is expected as pharmacological action of the aminoglycoside antibiotic gentamicin and that can also be explained by the p.o. administration of xenobiotica. Decreased Krebs cycle intermediates (citrate and 2-oxoglutarate) and increased lactate is associated with altered energy metabolism. Increased pseudouridine excretion is associated with cell proliferation and was observed with aristolochic acid and ochratoxin A, for which proliferative processes were observed with histopathology. 5-oxoproline and N,N-dimethylglycine can be associated with oxidative stress. Glucose, a marker of renal damage in clinical chemistry, was observed for all three nephrotoxins studied. Single study analysis with PCA of GC/MS chromatograms and 1H-NMR spectra of urine from 3 studies conducted within the InnoMed PredTox project showing bile duct necrosis revealed alterations in urinary profiles with the onset of changes in clinical chemistry and histopathology. Alterations were mainly decreased Krebs cycle intermediates and changes in the aromatic gut flora metabolites, an effect that may result as a secondary effect from altered bile flow. In conclusion, metabonomics techniques are able to detect toxic lesions at the same time as histopathology and clinical chemistry. The metabolites found to be altered are common to most toxicities and are not organ-specific. A mechanistic link to the observed toxicity has to be established in order to avoid confounders such as body weight loss, pharmacological effects etc. For pattern recognition purposes, large databases are necessary.}, subject = {Toxikologie}, language = {en} } @article{StopperEckertSchiffmannetal.1994, author = {Stopper, Helga and Eckert, I. and Schiffmann, D. and Spencer, D. L. and Caspary, W. J.}, title = {Is micronucleus induction by aneugens an early event leading to mutagenesis?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63390}, year = {1994}, abstract = {This study was designed to investigate a previously unidentified potential mechanism for mutation induction as well as to clarify a biological comequence of micronucleus formation. We compared the induction of micronuclei with mutation inductioo as measured by trißuorothymidine (TFI') resistance in mouse L5178Y cells using four aneugens: colcemid, diethylstilbestrol, griseofulvin and vioblastine. AU four compounds induced micronuclei which appeared in the first cell cycle after treatment. More than 85\% of the micronuclei induced by each compound stained positive for the presence of kinetochores implying that the micronuclei contained wbole cbromosomes. However, these same compounds were unable to induce TFf resistance under tbree different treatment regimes. We concluded that tbese compounds, under conditions where tbey induce primarily kinetochore positive micronuclel, were not able to induce mutations. Thus, the induction of micronuclei containing wbole chromosomes barborlog a select.able gene is not an early event leadlog to mutations in these cells.}, subject = {Toxikologie}, language = {en} }