@article{UeceylerValetKafkeetal.2014, author = {{\"U}{\c{c}}eyler, Nurcan and Valet, Michael and Kafke, Waldemar and T{\"o}lle, Thomas R. and Sommer, Claudia}, title = {Local and Systemic Cytokine Expression in Patients with Postherpetic Neuralgia}, doi = {10.1371/journal.pone.0105269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113041}, year = {2014}, abstract = {Background Postherpetic neuralgia (PHN) is the painful complication of a varicella zoster virus reactivation. We investigated the systemic and local gene expression of pro- and anti-inflammatory cytokine expression in patients with PHN. Methods Thirteen patients with PHN at the torso (Th4-S1) were recruited. Skin punch biopsies were obtained from the painful and the contralateral painless body area for intraepidermal nerve fiber density (IENFD) and cytokine profiling. Additionally, blood was withdrawn for systemic cytokine expression and compared to blood values of healthy controls. We analyzed the gene expression of selected pro- and anti-inflammatory cytokines (tumor necrosis factor-alpha [TNF] and interleukins [IL]-1β, IL-2, and IL-8). Results IENFD was lower in affected skin compared to unaffected skin (p<0.05), while local gene expression of pro- and anti-inflammatory cytokines did not differ except for two patients who had 7fold higher IL-6 and 10fold higher IL-10 gene expression in the affected skin compared to the contralateral unaffected skin sample. Also, the systemic expression of cytokines in patients with PHN and in healthy controls was similar. Conclusion While the systemic and local expression of the investigated pro- and anti-inflammatory cytokines was not different from controls, this may have been influenced by study limitations like the low number of patients and different disease durations. Furthermore, other cytokines or pain mediators need to be considered.}, language = {en} } @article{UeceylerTopuzoğluSchiesseretal.2011, author = {{\"U}{\c{c}}eyler, Nurcan and Topuzoğlu, Teng{\"u} and Schießer, Peter and Hahnenkamp, Saskia and Sommer, Claudia}, title = {IL-4 Deficiency Is Associated with Mechanical Hypersensitivity in Mice}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0028205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137924}, pages = {e28205}, year = {2011}, abstract = {Interleukin-4 (IL-4) is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko) mice to characterize their pain behavior before and after chronic constriction injury (CCI) of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS) of IL-4 ko mice in comparison with wildtype (wt) mice. Na{\"i}ve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001), while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF), IL-1β, IL-10, and IL-13 were found in the PNS and CNS of na{\"i}ve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001) 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014). Remarkably, CCI induced TNF (p<0.01), IL-1β (p<0.05), IL-10 (p<0.05), and IL-13 (p<0.001) gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.}, language = {en} } @article{ZhangLeeWehneretal.2015, author = {Zhang, Yi and Lee, Chil-Woo and Wehner, Nora and Imdahl, Fabian and Svetlana, Veselova and Weiste, Christoph and Dr{\"o}ge-Laser, Wolfgang and Deeken, Rosalia}, title = {Regulation of Oncogene Expression in T-DNA-Transformed Host Plant Cells}, series = {PLoS Pathogens}, volume = {11}, journal = {PLoS Pathogens}, number = {1}, doi = {10.1371/journal.ppat.1004620}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125256}, pages = {e1004620}, year = {2015}, abstract = {Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome where the encoded agrobacterial oncogenes are expressed and cause crown gall disease. Essential for crown gall development are IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) and Ipt (isopentenyl transferase), which encode enzymes for the biosynthesis of auxin (IaaH, IaaM) and cytokinin (Ipt). Although these oncogenes are well studied as the tumor-inducing principle, nothing is known about the regulation of oncogene expression in plant cells. Our studies show that the intergenic regions (IGRs) between the coding sequences (CDS) of the three oncogenes function as promoters in plant cells. These promoters possess a eukaryotic sequence organization and cis-regulatory elements for the binding of plant transcription factors. WRKY18, WRKY40, WRKY60 and ARF5 were identified as activators of the Ipt promoter whereas IaaH and IaaM is constitutively expressed and no transcription factor further activates their promoters. Consistent with these results, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene. WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours whereas the ARF5 gene is transcribed later during crown gall development. The WRKY proteins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 synergistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a pathogen defense response of the host cell. The WRKY protein is recruited to induce Ipt expression, which initiates cytokinin-dependent host cell division. With increasing auxin levels triggered by ubiquitous expression of IaaH and IaaM, ARF5 is activated and interacts with WRKY40 to potentiate Ipt expression and balance cytokinin and auxin levels for further cell proliferation.}, language = {en} } @article{ZannasArlothCarrilloRoaetal.2015, author = {Zannas, Anthony S. and Arloth, Janine and Carrillo-Roa, Tania and Iurato, Stella and R{\"o}h, Simone and Ressler, Kerry J. and Nemeroff, Charles B. and Smith, Alicia K. and Bradley, Bekh and Heim, Christine and Menke, Andreas and Lange, Jennifer F. and Br{\"u}ckl, Tanja and Ising, Marcus and Wray, Naomi R. and Erhardt, Angelika and Binder, Elisabeth B. and Mehta, Divya}, title = {Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling}, series = {Genome Biology}, volume = {16}, journal = {Genome Biology}, number = {266}, doi = {10.1186/s13059-015-0828-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149865}, year = {2015}, abstract = {Background Chronic psychological stress is associated with accelerated aging and increased risk for aging-related diseases, but the underlying molecular mechanisms are unclear. Results We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock. After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 \% (110/353) of these CpGs and transcription in 81.7 \% (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including coronary artery disease, arteriosclerosis, and leukemias. Conclusions Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking chronic stress with accelerated aging and heightened disease risk.}, language = {en} } @phdthesis{Zabka2008, author = {Zabka, Vanessa}, title = {The Plasticity of Barley (Hordeum vulgare) Leaf Wax Characteristics and their Effects on Early Events in the Powdery Mildew Fungus (Blumeria graminis f.sp. hordei): Interactive Adaptations at the Physiological and the Molecular Level}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26402}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {In order to test the effects of environmental factors on different characteristics of plant leaf waxes, barley plants (Hordeum vulgare) were abiotically stress treated (exposure to darkness, heavy metal, high salt concentrations and drought), and biotically stressed by the infection with powdery mildew (Blumeria graminis f.sp. hordei; Bgh). Different wax parameters like amount, chemical composition, and micromorphology of epicuticular wax crystals, were investigated. Etiolated leaves of barley showed distinctly reduced wax amounts and modifications in their relative composition. The alterations of these wax parameters might be a result of a developmental delay, which could have been caused by a decreased availability of energy for cellular processes, due to lack of light. Cadmium exposure led to a 1.5-fold increase of wax amount, while chemical composition was unaffected. In drought- and salt-stressed plants, all investigated leaf wax parameters remained unaltered. In each of the abiotic treatments, the microstructure of epicuticular wax crystals, formed as typical platelets, was not modified. Even after 6d infection with powdery mildew (Bgh), neither locally nor systemically enforced modifications of wax features were revealed. The analyzed leave surfaces, resulting from these four abiotic and the biotic treatment (phenotypic approach), were compared to altered leaf surfaces' characteristics of 18 analyzed eceriferum (cer-) wax mutants (genotypic approach). Within the screening, 5 mutants were selected which distinctly differed from the wild-type in wax amount, portions of epi- and intracuticular wax fraction, relative chemical composition, crystal morphology, and surface wettability (hydrophobicity). Apart from quantitative and qualitative effects on the leaf waxes, environmentally enforced modifications in cuticular waxes might be reflected in molecular processes of wax biogenesis. Therefore, a barley wax-microarray was established. 254 genes were selected, which are putatively involved in processes of de novo fatty acid biosynthesis, fatty acid elongation, and modification, and which are supposed to take part in lipid-trafficking between cell compartments, and transport of wax components to the outer cell surface. The regulations within the expression pattern evoked by the respective treatments were correlated with the corresponding analytical wax data, and the observed molecular effects of a 3d powdery mildew infection were compared with succeeding fungal morphogenesis. Etiolation and cadmium exposition pointed to transcriptional modifications in the de novo fatty acid synthesis, and in the screened, transport-related mechanisms, which correlate with respective alterations in surface wax characteristics. Moderate changes in the gene expression pattern, evoked by drought- and salinity-stress, might give hints for evolved adaptations in barley to such common habitat stresses. Theinvasion of powdery mildew into the epidermal host cells was reflected in the regulation of several genes. Beside other functions, these genes take part in pathogen defense, and intracellular component transport, or they encode transcription factors. The different modifications within the molecular responses evoked by the investigated abiotic treatments, and the effects of powdery mildew infection representing a biotic stressor, were compared between the different treatments. In order to test the potential impact of different wax parameters on Bgh, conidia germination and differentiation was comparably investigated on leaf surfaces of abiotically stressed wild-type and cer-mutants, isolated cuticles, and further artificial surfaces. The rates of conidial development were similar on each of the leaf surfaces resulting from the abiotic treatments, while a significant reduction of the germination and differentiation success was revealed for the wax mutant cer-yp.949. Compared to the wild-type, developmental rates on isolated cuticles and extracted leaf waxes of the mutant cer-yp.949 indicated a modified embedding of cuticular waxes, and a possibly changed three-dimensional structure of the cer-yp.949 cuticle, which might explain the reduced conidial developmental rates on leaf surfaces of this particular mutant. Experiments with Bgh conidia on mechanically de-waxed leaf surfaces (selective mechanical removal of the epicuticular leaf waxes with glue-like gum arabic, followed by an extraction of the intracuticular wax portion with chloroform) demonstrated the importance of the wax coverage for the germination and differentiation of the fungal conidia. On all dewaxed leaf surfaces, except those of cer-yp.949, the differentiation success of the germlings was significantly reduced, by about 20\% ("wax-effect"). This result was verified through an artificial system with increased conidia developmental rates on glass slides covered with extracted leaf waxes. Further comparative tests with the major components of barley leaf wax, hexacosanol and hexacosanal, showed that the germination and differentiation of powdery mildew conidia not only depends on the different chemistry, but is also influenced by the respective surface hydrophobicity. Compared to hexacosanol, on hexacosanal coated glass surfaces, higher germination and differentiation rates were achieved, which correlated with increased levels of surface hydrophobicity. Developmental rates of conidia on hydrophobic foils demonstrated that hydrophobicity, as a sole surface factor, may stimulate the conidial germination and differentiation processes. Moreover, the survival of conidia on artificial surfaces is determined by additional surface derived factors, e.g. the availability of water, and a pervadable matrix.}, subject = {Mehltau}, language = {en} } @phdthesis{Wu2006, author = {Wu, Rongxue}, title = {Integrins and SPARC : potential implications for cardiac remodeling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17531}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Der enorme Umbau des Herzgewebes, wie man ihn nach Druck{\"u}berlastung des Ventrikels oder MyokardInfarkt beobachten kann, gilt als eine der kausalen Ursachen des Herzversagens. Die Ver{\"a}nderungen in der Architektur des Herzens beeinflussen die mechanischen Eigenschaften des Herzmuskels, begr{\"u}ndet sind sie jedoch in Anpassungsprozessen auf der zellul{\"a}ren Ebene vor allem in einer Modulation der Expression bestimmter Gene. Gemeinsam mit Integrinen, den Transmembran-Rezeptoren, welche die extrazellul{\"a}re Umgebung mit dem intrazellul{\"a}ren Zytoskelett verbinden, geh{\"o}ren Proteine der extrazellul{\"a}ren Matrix (ECM) und matrizellul{\"a}re Proteine zu den Schl{\"u}sselkomponenten, die den Umbauprozess im Herzen steuern. Aus diesen Gr{\"u}nden hatte diese Doktorarbeit zum Ziel, die Rolle der Integrine f{\"u}r die Regulation der Genexpression und die Leistungsf{\"a}higkeit des Herzmuskels w{\"a}hrend der durch Druck{\"u}berlastung oder myokardialen Infarkt (MI) hervorgerufenen Wundheilungsprozesse zu analysieren. Um die Beteiligung von Integrin Beta 1 zu untersuchen, wurde ein experimentelles Modell der Druck{\"u}berlastung im Mausherzen (aortic banding; Konstriktion der Aorta; AB) eingesetzt, wobei M{\"a}use mit einer konditionalen, Herz-spezifischen Deletion des Integrin Beta 1 Gens untersucht wurden. Ein besonderes Augenmerk wurde dabei auf die physiologischen Unterschiede und eine ver{\"a}nderte Genexpression im gestressten Herzen in An- oder Abwesenheit von Integrin Beta 1 gelegt. Interessanterweise wurden die M{\"a}use, welche eine Kombination aus Integrin knock-out Allel und dem Kardiomyozyten-spezifischen konditionalen knock-out Allel von Integrin Beta 1 aufwiesen im normalen Mendelschen Verh{\"a}ltnis geboren und wuchsen normal auf. Obwohl diese Tiere immer noch geringe Mengen von Integrin Beta 1 in ihrem Herzen aufwiesen (exprimiert von nicht-Myozyten), besaßen diese M{\"a}use eine ver{\"a}nderte Herzfunktion und waren sehr sensitiv gegen{\"u}ber AB. Im Gegensatz zu der kompensatorischen hypertrophischen Reaktion, die in Wildtyp M{\"a}usen zu beobachten war, zeigte sich in den Integrin Beta 1-defizienten Mausherzen kein Gewebeumbau. Auch die erh{\"o}hte Expression von verschiedenen ECM Proteinen, insbesondere die verst{\"a}rkte Expression des matrizellul{\"a}ren Proteins SPARC, unterblieb nach AB in den Integrin Beta 1-defizienten Tieren. Interessanterweise konnte auch eine transiente Erh{\"o}hung der SPARC mRNA w{\"a}hrend der Umbauprozesse im Herzen in Folge von myokardialem Infarkt (MI) mittels cDNA Makroarrays festgestellt werden. In der Tat fanden sich gr{\"o}ßere Mengen von SPARC bereits 2 Tage (~2,5-fach erh{\"o}ht), 7 Tage (~4-fach erh{\"o}ht) und 1 Monat (~2-fach erh{\"o}ht) nach MI, w{\"a}hrend ein spezifischer Inhibitor der Integrin alpha v Untereinheit diese Hochregulation von SPARC in vivo verhinderte. Immunfluoreszenz Untersuchungen von Herzgewebe verdeutlichten, dass sich die erh{\"o}hte Expression von SPARC auf das Infarktareal beschr{\"a}nkte, dass die Expression von SPARC nach einer anf{\"a}nglichen Erh{\"o}hung im Verlauf von 1 Monaten wieder auf das Anfangsniveau zur{\"u}ckging und dass die verst{\"a}rkte Expression von der Einwanderung von Fibroblasten in das isch{\"a}mische Herzgewebe begleitet war. In vitro stimulierten die Wachstumsfaktoren TGF-Beta 1 und PDGF-BB die Expression von SPARC durch Fibroblasten. Wie sich an Hand von ELISA und Western Blot Untersuchungen feststellen ließ, war die Inhibition von Integrin Beta v nicht in der Lage, die durch TGF-Beta 1 oder PDGF induzierte Sekretion von SPARC zu beeinflussen. Jedoch zeigte sich, dass Vitronektin, ein Ligand von Integrin alpha v, sowohl die Sekretion von TGF-Beta 1 als auch von PDGF-BB durch Kardiomyozyten induzierte und diese Reaktion wurde durch den Integrin alpha v Inhibitor komplett unterdr{\"u}ckt. In funktioneller Hinsicht wirkte SPARC auf die durch ECM Proteine induzierte Migration von Fibroblasten ein, so dass man davon ausgehen kann, dass die lokale Freisetzung von SPARC nach myokardialem Infarkt zur Wundheilung im Herzen beitr{\"a}gt. Zusammenfassend l{\"a}ßt die Kombination der in vivo und in vitro erhobenen experimentellen Daten den Schluss zu, dass mehrere Integrin Untereinheiten eine entscheidende Rolle w{\"a}hrend der Gewebeumbildung im Herzen spielen. Integrin-abh{\"a}ngige Genexpressionsereignisse wie beispielsweise die erh{\"o}hte Expression von SPARC nach MI sind entscheidend an der Koordination der Wundheilung beteiligt. Diese Prozesse scheinen auf einer komplexen Wechselwirkung und Kommunikation zwischen verschiedenen Zelltypen wie Kardiomyozyten und Fibroblasten zu beruhen, um lokal begrenzt eine Heilung und Vernarbung des verletzten Gewebes zu regulieren. Die Aufkl{\"a}rung des fein abgestimmten Wechselspiels zwischen Integrinen matrizellul{\"a}ren Proteinen wie SPARC und Wachstumsfaktoren wird sicherlich zu einem besseren und klinisch nutzbarem Verst{\"a}ndnis der molekularen Mechanismen des Gewebeumbaus im Herzen beitragen.}, subject = {Integrine}, language = {en} } @phdthesis{Wu2007, author = {Wu, Rongxue}, title = {Treatment with integrin alpha v inhibitor abolishes compensatory cardiac hypertrophy due to altered signal transduction and ECM gene expression}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21339}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Integrine sind Transmembranrezeptoren, welche mechanische Signale von der extrazellul{\"a}ren Matrix (ECM) zum Zytoskelett {\"u}bermitteln ("outside-in-signaling"). Viele molekulare Defekte in der Verbindung zwischen Zytoskelett und ECM erzeugen bekanntermaßen Kardiomyopathien. alpha v Integrin scheint eine Hauptrolle in verschiedenen Prozessen der kardialen Reorganisation zu spielen, wie z.B. Regulation der Zellproliferation, -migration und -differenzierung. Unsere Hypothese war, dass alpha v -Integrin-vermittelte Signale notwendig f{\"u}r die kompensatorische Hypertrophie nach Aortenkonstriktion sind und assoziiert mit der Modulation der Expression von ECM-Proteinen. Dazu wurden M{\"a}use mit einem spezifischen alpha v Integrin-Inhibitor behandelt und einer Aortenkonstriktion (AB) unterzogen. Nach zwei Tagen und nach sieben Tagen wurden die M{\"a}use echokardiographisch untersucht und eingehende h{\"a}modynamische Untersuchungen wurden durchgef{\"u}hrt. Die Behandlung mit dem alpha v -Integrin-Inhibitor f{\"u}hrte zu einer dilatativen Kardiomyopathie und Herzinsuffizienz in den AB-M{\"a}usen, gekennzeichnet durch einen dilatierten linken Ventrikel, schlechte linksventrikul{\"a}re Funktion und einer Lungenstauung, wohingegen die scheinbehandelten Tiere eine kompensatorische Hypertrophie des linken Ventrikels zeigten. Untersuchungen der beteiligten Signalwege zeigten eine Aktivierung des p38 MAP-Kinase-Signalwegs, von ERK 1 und -2, der Focal Adhesion Kinase FAK und Tyrosin-Phosphorylierung von c-Src in den Kontrollherzen, was in den Inhibitor-behandelten Herzen fehlte. mRNA-Expressionsanalysen f{\"u}r 96 Gene mittels "Micro-Arrays" ermittelten verschiedene genomische Ziele des alpha v -Integrin-aktivierten Signalwegs. 18 f{\"u}r ECM-Proteine codierende Gene wurden mehr als 2-fach hochreguliert, z.B. Kollagen (8,11-fach ± 2,2), Fibronectin (2,32 ± 094), SPARC (3,78 ± 0,12), ADAMTS-1 (3,51 ± 0,81) und TIMP2 (2,23 ± 0,98), wohingegen die Aktivierung dieser Gene in Inhibitor-behandelten Tieren aufgehoben war. Wir folgern daraus, dass Signalwege unterhalb von alpha v -Integrin, mediiert durch MAP-Kinasen, FAK und c-Src, zu einer verst{\"a}rkten Expression von ECM-Komponenten f{\"u}hrt, welche f{\"u}r die kompensatorische Antwort auf Druckbelastung n{\"o}tig sind.}, subject = {Antigen}, language = {en} } @article{WolfAkrapMargetal.2013, author = {Wolf, Annette and Akrap, Nina and Marg, Berenice and Galliardt, Helena and Heiligentag, Martyna and Humpert, Fabian and Sauer, Markus and Kaltschmidt, Barbara and Kaltschmidt, Christian and Seidel, Thorsten}, title = {Elements of Transcriptional Machinery Are Compatible among Plants and Mammals}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0053737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131203}, pages = {e53737}, year = {2013}, abstract = {In the present work, the objective has been to analyse the compatibility of plant and human transcriptional machinery. The experiments revealed that nuclear import and export are conserved among plants and mammals. Further it has been shown that transactivation of a human promoter occurs by human transcription factor NF-\(\kappa\) B in plant cells, demonstrating that the transcriptional machinery is highly conserved in both kingdoms. Functionality was also seen for regulatory elements of NF-\(\kappa\) B such as its inhibitor I\(\kappa\)B isoform \(\alpha\) that negatively regulated the transactivation activity of the p50/RelA heterodimer by interaction with NF-\(\kappa\)B in plant cells. Nuclear export of RelA could be demonstrated by FRAP-measurements so that RelA shows nucleo-cytoplasmic shuttling as reported for RelA in mammalian cells. The data reveals the high level of compatibility of human transcriptional elements with the plant transcriptional machinery. Thus, Arabidopsis thaliana mesophyll protoplasts might provide a new heterologous expression system for the investigation of the human NF-\(\kappa\)B signaling pathways. The system successfully enabled the controlled manipulation of NF-\(\kappa\)B activity. We suggest the plant protoplast system as a tool for reconstitution and analyses of mammalian pathways and for direct observation of responses to e. g. pharmaceuticals. The major advantage of the system is the absence of interference with endogenous factors that affect and crosstalk with the pathway.}, language = {en} } @article{WeistePedrottiSelvanayagametal.2017, author = {Weiste, Christoph and Pedrotti, Lorenzo and Selvanayagam, Jebasingh and Muralidhara, Prathibha and Fr{\"o}schel, Christian and Nov{\´a}k, Ondřej and Ljung, Karin and Hanson, Johannes and Dr{\"o}ge-Laser, Wolfgang}, title = {The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth}, series = {PLoS Genetics}, volume = {13}, journal = {PLoS Genetics}, number = {2}, doi = {10.1371/journal.pgen.1006607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157742}, pages = {e1006607}, year = {2017}, abstract = {Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S\(_{1}\) basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S\(_{1}\) bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S\(_{1}\)-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.}, language = {en} } @article{WangChenMinevetal.2012, author = {Wang, Huiqiang and Chen, Nanhai G. and Minev, Boris R. and Szalay, Aladar A.}, title = {Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells}, series = {Journal of Translational Medicine}, volume = {10}, journal = {Journal of Translational Medicine}, number = {167}, doi = {10.1186/1479-5876-10-167}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130019}, year = {2012}, abstract = {Background: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer, as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence, novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. Methods: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance, irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover, we identified and isolated CD44\(^+\)CD24\(^+\)ESA\(^+\) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. Results: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore, GLV-1h68 also showed preferential replication in CD44\(^+\)CD24\(^+\)ESA\(^+\) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44\(^+\)CD24\(^-\)ESA\(^+\) cells. Conclusions: Taken together, our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus, GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors, especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors.}, language = {en} }