@phdthesis{Jakob2012, author = {Jakob, Sissi}, title = {Molecular mechanisms of early-life stress in 5-Htt deficient mice: Gene x environment interactions and epigenetic programming}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74150}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Early-life stress has been shown to influence the development of the brain and to increase the risk for psychiatric disorders later in life. Furthermore, variation in the human serotonin transporter (5-HTT, SLC6A4) gene is suggested to exert a modulating effect on the association between early-life stress and the risk for depression. At the basis of these gene x environment (G x E) interactions, epigenetic mechanisms, such as DNA-methylation, seem to represent the primary biological processes mediating early-life programming for stress susceptibility or resilience, respectively. The exact molecular mechanisms however remain to be elucidated, though. In the present study, we used two different stress paradigms to assess the molecular mechanisms mediating the relationship between early-life stress and disorders of emotion regulation later in life. First, a 5-Htt x prenatal stress (PS) paradigm was applied to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition and anxiety- / depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL/6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt+/-) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression and DNA methylation profiling was performed using the Affymetrix GeneChip® Mouse Genome 430 2.0 Array and the AffymetrixGeneChip® Mouse Promoter 1.0R Array. Some of the resulting candidate genes were validated by quantitative real-time PCR. Further, the gene expression of these genes was measured in other brain regions of the PS animals as well as in the hippocampus of offspring of another, 5-Htt x perinatal stress (PeS) paradigm, in which pregnant and lactating females were stressed by an olfactory cue indicating infanticide. To assess resilience to PS and PeS, correlation studies between gene expression and behaviour were performed based on an initial performance-based LIMMA analysis of the gene expression microarray. 5-Htt+/- offspring of the PS paradigm showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt+/- mice to PS was associated with increased depression-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression and DNA methylation of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt+/- genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotype x PS manner, indicating a gene x environment interaction at the molecular level. The candidate genes of the expression array could be validated and their expression patterns were partly consistent in the prefrontal cortex and striatum. Furthermore, the genotype effect of XIAP associated factor 1 (Xaf1) was also detected in the mice of the PeS paradigm. Concerning resilience, we found that the expression of growth hormone (Gh), prolactin (Prl) and fos-induced growth factor (Figf) were downregulated in WTPS mice that performed well in the forced swim test (FST). At the same time, the results indicated that Gh and Prl expression correlated positively with adrenal weight, whereas Figf expression correlated positively with basal corticosteron concentration, indicating an intricate relationship between depression-like behavior, hippocampal gene expression and the hypothalamo-pituitary-adrenal (HPA) axis activity. Correlation studies in the PeS animals revealed a link between Gh / Prl expression and anxiety-like behavior. In conclusion, our data suggest that although the 5-Htt+/- genotype shows clear adaptive capacity, 5-Htt+/- mice, particularly females, appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression and DNA methylation profiles suggest that distinct epigenetic mechanisms at the molecular level mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction. Further, resilience to early-life stress might be conferred by genes whose expression is linked to HPA axis function.}, subject = {Stressreaktion}, language = {en} } @phdthesis{Waider2012, author = {Waider, Jonas}, title = {The effects of serotonin deficiency in mice: Focus on the GABAergic system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74565}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Based on genetic association and functional imaging studies, reduced function of tryptophan hydroxylase-2 (TPH2) has been shown to be critically involved in the pathophysiology of anxiety-disorders and depression. In order to elucidate the impact of a complete neuronal 5-HT deficiency, mice with a targeted inactivation of the gene encoding Tph2 were generated. Interestingly, survival of Tph2-/- mice, the formation of serotonergic neurons and the pathfinding of their projections was not impaired. Within this thesis, I investigated the influence of 5-HT deficiency on the γ-amino butyric acid (GABA) system. The GABAergic system is implicated in the pathophysiology of anxiety disorders. Therefore, measurement of GABA concentrations in different limbic brain regions was carried out. These measurements were combined with immunohistochemical estimation of GABAergic cell subpopulations in the dorsal hippocampus and amygdala. In Tph2-/- mice GABA concentrations were increased exclusively in the dorsal hippocampus. In heterozygous Tph2+/- mice concentrations of GABA were increased in the amygdala compared to Tph2-/- and wt control mice, while the reverse was found in the prefrontal cortex. The changes in GABA concentrations were accompanied by altered cell density of GABAergic neurons within the basolateral complex of the amygdala and parvalbumin (PV) neurons of the dorsal hippocampus and by adaptational changes of 5-HT receptors. Thus, adaptive changes during the development on the GABA system may reflect altered anxiety-like and depressive-like behavior in adulthood. Moreover, chronic mild stress (CMS) rescues the depressive-like effects induced by 5-HT deficiency. In contrast, 5-HT is important in mediating an increased innate anxiety-like behavior under CMS conditions. This is in line with a proposed dual role of 5-HT acting through different mechanisms on anxiety and depressive-like behavior, which is influenced by gene-environment interaction effects. Further research is needed to disentangle these complex networks in the future.}, subject = {Knockout }, language = {en} } @phdthesis{Heinzel2012, author = {Heinzel, Sebastian}, title = {Multimodal neuroimaging of prefrontal cortex (dys)function: EEG, fNIRS, fNIRS-fMRI and Imaging Genetics approaches}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75710}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The present cumulative dissertation comprises three neuroimaging studies using different techniques, functional tasks and experimental variables of diverse nature to investigate human prefrontal cortex (PFC) (dys)function as well as methodological aspects of functional near-infrared spectroscopy (fNIRS). (1) Both dopamine (DA) availability ("inverted U-model") and excitatory versus inhibitory DA receptor stimulation ("dual-state theory") have been linked to PFC processing and cognitive control function. Electroencephalography (EEG) was recorded during a Go/NoGo response inhibition task in 114 healthy controls and 181 adult patients with attention-deficit/hyperactivity disorder (ADHD). As a neural measure of prefrontal cognitive response control the anteriorization of the P300 centroid in NoGo- relative to Go-trials (NoGo anteriorization, NGA) was investigated for the impact of genetic polymorphisms modulating catechol-O-methyltransferase efficiency (COMT, Val158Met) in degrading prefrontal DA and inhibitory DA receptor D4 sensitivity (DRD4, 48bp VNTR). Single genes and ADHD diagnosis showed no significant impact on the NGA or behavioral measures. However, a significant COMT×DRD4 interaction was revealed as subjects with relatively increased D4-receptor function (DRD4: no 7R-alleles) displayed an "inverted U"-relationship between the NGA and increasing COMT-dependent DA levels, whereas subjects with decreased D4-sensitivity (7R) showed a U-relationship. This interaction was supported by 7R-allele dose-effects and also reflected by an impact on task behavior, i.e. intraindividual reaction time variability. Combining previous theories of PFC DA function, neural stability at intermediate DA levels may be accompanied by the risk of overly decreased neural flexibility if inhibitory DA receptor function is additionally decreased. The findings of COMT×DRD4 epistasis might help to disentangle the genetic basis of dopaminergic mechanisms underlying prefrontal (dys)function. (2) While progressive neurocognitive impairments are associated with aging and Alzheimer's disease (AD), cortical reorganization might delay difficulties in effortful word retrieval, which is one of the earliest cognitive signs of AD. Therefore, cortical hemodynamic responses were measured with fNIRS during phonological and semantic verbal fluency, and investigated in 325 non-demented, healthy subjects (age: 51-82 years). The predictive value of age, sex, verbal fluency performance and years of education for the cortical hemodynamics was assessed using multiple regression analyses. Age predicted bilaterally reduced inferior frontal junction (IFJ) and increased middle frontal and supramarginal gyri activity in both task conditions. Years of education as well as sex (IFJ activation in females > males) partly predicted opposite effects on activation compared to age, while task performance was not a significant predictor. All predictors showed small effect sizes (-.24 < β < .22). Middle frontal and supramarginal gyri activity may compensate for an aging-related decrease in IFJ recruitment during verbal fluency. The findings of aging-related (compensatory) cortical reorganization of verbal fluency processing might, in combination with other (risk) factors and using longitudinal observations, help to identify neurodegenerative processes of Alzheimer's disease, while individuals are still cognitively healthy. (3) Individual anatomical or systemic physiological sources of variance may hamper the interpretation of fNIRS signals as neural correlates of cortical functions and their association with individual personality traits. Using simultaneous fNIRS and functional magnetic resonance imaging (fMRI) of hemodynamic responses elicited by an intertemporal choice task in 20 healthy subjects, variability in crossmodal correlations and divergence in associations of the activation with trait "sensitivity to reward" (SR) was investigated. Moreover, an impact of interindividual anatomy and scalp fMRI signal fluctuations on fNIRS signals and activation-trait associations was studied. Both methods consistently detected activation within right inferior/middle frontal gyrus, while fNIRS-fMRI correlations showed wide variability between subjects. Up to 41\% of fNIRS channel activation variance was explained by gray matter volume (simulated to be) traversed by near-infrared light, and up to 20\% by scalp-cortex distance. Extracranial fMRI and fNIRS time series showed significant temporal correlations at the temple. Trait SR was negatively correlated with fMRI but not fNIRS activation elicited by immediate rewards of choice within right inferior/middle frontal gyrus. Higher trait SR increased the correlation between extracranial fMRI signal fluctuations and fNIRS signals, suggesting that task-evoked systemic arousal-effects might be trait-dependent. Task-related fNIRS signals might be impacted by regionally and individually weighted sources of anatomical and systemic physiological error variance. Traitactivation correlations might be affected or biased by systemic physiological arousal-effects, which should be accounted for in future fNIRS studies of interindividual differences.}, subject = {Pr{\"a}frontaler Kortex}, language = {en} } @article{WuPuAllenetal.2012, author = {Wu, Lingdan and Pu, Jie and Allen, John J. B. and Pauli, Paul}, title = {Recognition of facial expressions in individuals with elevated levels of depressive symptoms: an eye-movement study}, series = {Depression Research and Treatment}, volume = {2012}, journal = {Depression Research and Treatment}, number = {249030}, doi = {10.1155/2012/249030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123153}, year = {2012}, abstract = {Previous studies consistently reported abnormal recognition of facial expressions in depression. However, it is still not clear whether this abnormality is due to an enhanced or impaired ability to recognize facial expressions, and what underlying cognitive systems are involved. The present study aimed to examine how individuals with elevated levels of depressive symptoms differ from controls on facial expression recognition and to assess attention and information processing using eye tracking. Forty participants (18 with elevated depressive symptoms) were instructed to label facial expressions depicting one of seven emotions. Results showed that the high-depression group, in comparison with the low-depression group, recognized facial expressions faster and with comparable accuracy. Furthermore, the high-depression group demonstrated greater leftwards attention bias which has been argued to be an indicator of hyperactivation of right hemisphere during facial expression recognition.}, language = {en} } @article{BonnSchmittAsan2012, author = {Bonn, Maria and Schmitt, Angelika and Asan, Esther}, title = {Double and triple in situ hybridization for coexpression studies: combined fluorescent and chromogenic detection of neuropeptide Y (NPY) and serotonin receptor subtype mRNAs expressed at different abundance levels}, series = {Histochemistry and Cell Biology}, volume = {137}, journal = {Histochemistry and Cell Biology}, number = {1}, doi = {10.1007/s00418-011-0882-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126720}, pages = {11-24}, year = {2012}, abstract = {Multiple fluorescence in situ hybridization is the method of choice for studies aimed at determining simultaneous production of signal transduction molecules and neuromodulators in neurons. In our analyses of the monoamine receptor mRNA expression of peptidergic neurons in the rat telencephalon, double tyramide-signal-amplified fluorescence in situ hybridization delivered satisfactory results for coexpression analysis of neuropeptide Y (NPY) and serotonin receptor 2C (5-HT2C) mRNA, a receptor subtype expressed at high-to-moderate abundance in the regions analyzed. However, expression of 5-HT1A mRNA, which is expressed at comparatively low abundance in many telencephalic areas, could not be unequivocally identified in NPY mRNA-reactive neurons due to high background and poor signal-to-noise ratio in fluorescent receptor mRNA detections. Parallel chromogenic in situ hybridization provided clear labeling for 5-HT1A mRNA and additionally offered the possibility to monitor the chromogen deposition at regular time intervals to determine the optimal signal-to-noise ratio. We first developed a double labeling protocol combining fluorescence and chromogenic in situ hybridization and subsequently expanded this variation to combine double fluorescence and chromogenic in situ hybridization for triple labelings. With this method, we documented expression of 5-HT2C and/or 5-HT1A in subpopulations of telencephalic NPY-producing neurons. The method developed in the present study appears suitable for conventional light and fluorescence microscopy, combines advantages of fluorescence and chromogenic in situ hybridization protocols and thus provides a reliable non-radioactive alternative to previously published multiple labeling methods for coexpression analyses in which one mRNA species requires highly sensitive detection.}, language = {en} } @article{BonnSchmittAsan2012, author = {Bonn, Maria and Schmitt, Angelika and Asan, Esther}, title = {Double and triple in situ hybridization for coexpression studies: combined fluorescent and chromogenic detection of neuropeptide Y (NPY) and serotonin receptor subtype mRNAs expressed at different abundance levels}, series = {Histochemistry and Cell Biology}, volume = {137}, journal = {Histochemistry and Cell Biology}, number = {1}, doi = {10.1007/s00418-011-0882-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127080}, pages = {11-24}, year = {2012}, abstract = {Multiple fluorescence in situ hybridization is the method of choice for studies aimed at determining simultaneous production of signal transduction molecules and neuromodulators in neurons. In our analyses of the monoamine receptor mRNA expression of peptidergic neurons in the rat telencephalon, double tyramide-signal-amplified fluorescence in situ hybridization delivered satisfactory results for coexpression analysis of neuropeptide Y (NPY) and serotonin receptor 2C (5-HT2C) mRNA, a receptor subtype expressed at high-to-moderate abundance in the regions analyzed. However, expression of 5-HT1A mRNA, which is expressed at comparatively low abundance in many telencephalic areas, could not be unequivocally identified in NPY mRNA-reactive neurons due to high background and poor signal-to-noise ratio in fluorescent receptor mRNA detections. Parallel chromogenic in situ hybridization provided clear labeling for 5-HT1A mRNA and additionally offered the possibility to monitor the chromogen deposition at regular time intervals to determine the optimal signal-to-noise ratio. We first developed a double labeling protocol combining fluorescence and chromogenic in situ hybridization and subsequently expanded this variation to combine double fluorescence and chromogenic in situ hybridization for triple labelings. With this method, we documented expression of 5-HT2C and/or 5-HT1A in subpopulations of telencephalic NPY-producing neurons. The method developed in the present study appears suitable for conventional light and fluorescence microscopy, combines advantages of fluorescence and chromogenic in situ hybridization protocols and thus provides a reliable non-radioactive alternative to previously published multiple labeling methods for coexpression analyses in which one mRNA species requires highly sensitive detection.}, language = {en} } @article{ConzelmannReifJacobetal.2012, author = {Conzelmann, Annette and Reif, Andreas and Jacob, Christian and Weyers, Peter and Lesch, Klaus-Peter and Lutz, Beat and Pauli, Paul}, title = {A polymorphism in the gene of the endocannabinoid-degrading enzyme FAAH (FAAH C385A) is associated with emotional-motivational reactivity}, series = {Psychopharmacology}, volume = {224}, journal = {Psychopharmacology}, number = {4}, doi = {10.1007/s00213-012-2785-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126845}, pages = {573-579}, year = {2012}, abstract = {RATIONALE: The endocannabinoid (eCB) system is implicated in several psychiatric disorders. Investigating emotional-motivational dysfunctions as underlying mechanisms, a study in humans revealed that in the C385A polymorphism of the fatty acid amide hydrolase (FAAH), the degrading enzyme of the eCB anandamide (AEA), A carriers, who are characterized by increased signaling of AEA as compared to C/C carriers, exhibited reduced brain reactivity towards unpleasant faces and enhanced reactivity towards reward. However, the association of eCB system with emotional-motivational reactivity is complex and bidirectional due to upcoming compensatory processes. OBJECTIVES: Therefore, we further investigated the relationship of the FAAH polymorphism and emotional-motivational reactivity in humans. METHODS: We assessed the affect-modulated startle, and ratings of valence and arousal in response to higher arousing pleasant, neutral, and unpleasant pictures in 67 FAAH C385A C/C carriers and 45 A carriers. RESULTS: Contrarily to the previous functional MRI study, A carriers compared to C/C carriers exhibited an increased startle potentiation and therefore emotional responsiveness towards unpleasant picture stimuli and reduced startle inhibition indicating reduced emotional reactivity in response to pleasant pictures, while both groups did not differ in ratings of arousal and valence. CONCLUSIONS: Our findings emphasize the bidirectionality and thorough examination of the eCB system's impact on emotional reactivity as a central endophenotype underlying various psychiatric disorders.}, language = {en} } @article{KittelSchneiderKenisScheketal.2012, author = {Kittel-Schneider, Sarah and Kenis, Gunter and Schek, Julia and van den Hove, Daniel and Prickaerts, Jos and Lesch, Klaus-Peter and Steinbusch, Harry and Reif, Andreas}, title = {Expression of monoamine transporters, nitric oxide synthase 3, and neurotrophin genes in antidepressant-stimulated astrocytes}, series = {Frontiers in Psychiatry}, volume = {3}, journal = {Frontiers in Psychiatry}, doi = {10.3389/fpsyt.2012.00033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123627}, pages = {33}, year = {2012}, abstract = {Background: There is increasing evidence that glial cells play a role in the pathomechanisms of mood disorders and the mode of action of antidepressant drugs. Methods: To examine whether there is a direct effect on the expression of different genes encoding proteins that have been implicated in the pathophysiology of affective disorders, primary astrocyte cell cultures from rats were treated with two different antidepressant drugs, imipramine and escitalopram, and the RNA expression of brain-derived neurotrophic factor (Bdnf), serotonin transporter (5Htt), dopamine transporter (Dat), and endothelial nitric oxide synthase (Nos3) was examined. Results: Stimulation of astroglial cell culture with imipramine, a tricyclic antidepressant, led to a significant increase of the Bdnf RNA level whereas treatment with escitalopram did not. In contrast, 5Htt was not differentially expressed after antidepressant treatment. Finally, neither Dat nor Nos3 RNA expression was detected in cultured astrocytes. Conclusion: These data provide further evidence for a role of astroglial cells in the molecular mechanisms of action of antidepressants.}, language = {en} } @article{FrankeFaraoneAshersonetal.2012, author = {Franke, B. and Faraone, S. V. and Asherson, P. and Buitelaar, J. and Bau, C. H. D. and Ramos-Quiroga, J. A. and Mick, E. and Grevet, E. H. and Johansson, S. and Haavik, J. and Lesch, K.-P. and Cormand, B. and Reif, A.}, title = {The genetics of attention deficit/hyperactivity disorder in adults, a review}, series = {Molecular Psychiatry}, volume = {17}, journal = {Molecular Psychiatry}, doi = {10.1038/mp.2011.138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124677}, pages = {960-987}, year = {2012}, abstract = {The adult form of attention deficit/hyperactivity disorder (aADHD) has a prevalence of up to 5\% and is the most severe long-term outcome of this common neurodevelopmental disorder. Family studies in clinical samples suggest an increased familial liability for aADHD compared with childhood ADHD (cADHD), whereas twin studies based on self-rated symptoms in adult population samples show moderate heritability estimates of 30-40\%. However, using multiple sources of information, the heritability of clinically diagnosed aADHD and cADHD is very similar. Results of candidate gene as well as genome-wide molecular genetic studies in aADHD samples implicate some of the same genes involved in ADHD in children, although in some cases different alleles and different genes may be responsible for adult versus childhood ADHD. Linkage studies have been successful in identifying loci for aADHD and led to the identification of LPHN3 and CDH13 as novel genes associated with ADHD across the lifespan. In addition, studies of rare genetic variants have identified probable causative mutations for aADHD. Use of endophenotypes based on neuropsychology and neuroimaging, as well as next-generation genome analysis and improved statistical and bioinformatic analysis methods hold the promise of identifying additional genetic variants involved in disease etiology. Large, international collaborations have paved the way for well-powered studies. Progress in identifying aADHD risk genes may provide us with tools for the prediction of disease progression in the clinic and better treatment, and ultimately may help to prevent persistence of ADHD into adulthood.}, language = {en} } @article{JainVelezAcostaetal.2012, author = {Jain, M. and V{\´e}lez, J. I. and Acosta, M. T. and Palacio, L. G. and Balog, J. and Roessler, E. and Pineda, D. and Londo{\~n}o, A. C. and Palacio, J. D. and Arbelaez, A. and Lopera, F. and Elia, J. and Hakonarson, H. and Seitz, C. and Freitag, C. M. and Palmason, H. and Meyer, J. and Romanos, M. and Walitza, S. and Hemminger, U. and Warnke, A. and Romanos, J. and Renner, T. and Jacob, C. and Lesch, K.-P. and Swanson, J. and Castellanos, F. X. and Bailey-Wilson, J. E. and Arcos-Burgos, M. and Muenke, M.}, title = {A cooperative interaction between LPHN3 and 11q doubles the risk for ADHD}, series = {Molecular Psychiatry}, volume = {17}, journal = {Molecular Psychiatry}, doi = {10.1038/mp.2011.59}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125128}, pages = {741-747}, year = {2012}, abstract = {In previous studies of a genetic isolate, we identified significant linkage of attention deficit hyperactivity disorder (ADHD) to 4q, 5q, 8q, 11q and 17p. The existence of unique large size families linked to multiple regions, and the fact that these families came from an isolated population, we hypothesized that two-locus interaction contributions to ADHD were plausible. Several analytical models converged to show significant interaction between 4q and 11q (P<1 × 10-8) and 11q and 17p (P<1 × 10-6). As we have identified that common variants of the LPHN3 gene were responsible for the 4q linkage signal, we focused on 4q-11q interaction to determine that single-nucleotide polymorphisms (SNPs) harbored in the LPHN3 gene interact with SNPs spanning the 11q region that contains DRD2 and NCAM1 genes, to double the risk of developing ADHD. This interaction not only explains genetic effects much better than taking each of these loci effects by separated but also differences in brain metabolism as depicted by proton magnetic resonance spectroscopy data and pharmacogenetic response to stimulant medication. These findings not only add information about how high order genetic interactions might be implicated in conferring susceptibility to develop ADHD but also show that future studies of the effects of genetic interactions on ADHD clinical information will help to shape predictive models of individual outcome.}, language = {en} }