@phdthesis{Chaudhari2013, author = {Chaudhari, Sweena M.}, title = {Role of Hypoxia-Inducible Factor (HIF) 1α in Dendritic Cells in Immune Regulation of Atherosclerosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-91853}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Atherosclerosis is the underlying cause of cardiovascular diseases and a major threat to human health worldwide. It involves not only accumulation of lipids in the vessel wall but a chronic inflammatory response mediated by highly specific cellular and molecular responses. Macrophages and dendritic cells (DCs) play an essential role in taking up modified lipids and presenting them to T and B lymphocytes, which promote the immune response. Enhanced activation, migration and accumulation of inflammatory cells at the local site leads to formation of atherosclerotic plaques. Atherosclerotic plaques become hypoxic due to reduced oxygen diffusion and high metabolic demand of accumulated cells. The various immune cells experience hypoxic conditions locally and inflammatory stimuli systemically, thus up-regulating Hypoxia-inducible factor 1α. Though the role of HIF1α in macrophages and lymphocytes has been elucidated, its role in DCs still remains controversial, especially with respect to atherosclerosis. In this project work, the role of HIF1α in DCs was investigated by using a cell specific knockout mouse model where HIF1α was deleted in CD11c+ cells. Aortic root sections from atherosclerotic mice showed presence of hypoxia and up-regulation of HIF1α which co-localized with CD11c+ cells. Atherosclerotic splenic DCs also displayed enhanced expression of HIF1α, proving non-hypoxic stimulation of HIF1α due to systemic inflammation. Conditional knockout (CKO) mice lacking HIF1α in CD11c+ cells, under baseline conditions did not show changes in immune responses suggesting effects of HIF1α only under inflammatory conditions. When these mice were crossed to the Ldlr-/- line and placed on 8 weeks of high fat diet, they developed enhanced plaques with higher T-cell infiltration as compared to the wild-type (WT) controls. The plaques were of a complex phenotype, defined by increased percent of smooth muscle cells (SMCs) and necrotic core area and reduced percent of macrophages and DCs. The mice also displayed enhanced T-cell activation and a Th1 bias in the periphery. The CKO DCs themselves exhibited increased expression of IL 12 and a higher capacity to proliferate and polarize naive T cells to the Th1 phenotype in vitro. The DCs also showed decreased expression of STAT3, in line with the inhibitory effects of STAT3 on DC activation seen in previous studies. When STAT3 was overexpressed in DCs in vitro, IL 12 was down-regulated, but its expression increased significantly on STAT3 inhibition using a mutant vector. In addition, when STAT3 was overexpressed in DCs in vivo using a Cre regulated lentiviral system, the mice showed decreased plaque formation compared to controls. Interestingly, the effects of STAT3 modulation were similar in WT and CKO mice, intending that STAT3 lies downstream of HIF1α. Finally, using a chromatin immunoprecipitation assay (ChIP), it was confirmed that HIF1α binds to hypoxia responsive elements (HREs) in the Stat3 gene promoter thus regulating its expression. When DCs lack HIF1α, STAT3 expression is not stimulated and hence IL 12 production by DCs is uninhibited. This excessive IL 12 can activate naive T cells and polarize them to the Th1 phenotype, thereby enhancing atherosclerotic plaque progression. This project thus concludes that HIF1α restrains DC activation via STAT3 generation and prevents excessive production of IL 12 that helps to keep inflammation and atherosclerosis under check.}, subject = {Dendritische Zelle}, language = {en} } @phdthesis{Busch2013, author = {Busch, Martin}, title = {Aortic Dendritic Cell Subsets in Healthy and Atherosclerotic Mice and The Role of the miR-17~92 Cluster in Dendritic Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71683}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Atherosclerosis is accepted to be a chronic inflammatory disease of the arterial vessel wall. Several cellular subsets of the immune system are involved in its initiation and progression, such as monocytes, macrophages, T and B cells. Recent research has demonstrated that dendritic cells (DCs) contribute to atherosclerosis, too. DCs are defined by their ability to sense and phagocyte antigens, to migrate and to prime other immune cells, such as T cells. Although all DCs share these functional characteristics, they are heterogeneous with respect to phenotype and origin. Several markers have been used to describe DCs in different lymphoid and non-lymphoid organs; however, none of them has proven to be unambiguous. The expression of surface molecules is highly variable depending on the state of activation and the surrounding tissue. Furthermore, DCs in the aorta or the atherosclerotic plaque can be derived from designated precursor cells or from monocytes. In addition, DCs share both their marker expression and their functional characteristics with other myeloid cells like monocytes and macrophages. The repertoire of aortic DCs in healthy and atherosclerotic mice has just recently started to be explored, but yet there is no systemic study available, which describes the aortic DC compartment. Because it is conceivable that distinct aortic DC subsets exert dedicated functions, a detailed description of vascular DCs is required. The first part of this thesis characterizes DC subsets in healthy and atherosclerotic mice. It describes a previously unrecognized DC subset and also sheds light on the origin of vascular DCs. In recent years, microRNAs (miRNAs) have been demonstrated to regulate several cellular functions, such as apoptosis, differentiation, development or proliferation. Although several cell types have been characterized extensively with regard to the miRNAs involved in their regulation, only few studies are available that focus on the role of miRNAs in DCs. Because an improved understanding of the regulation of DC functions would allow for new therapeutic options, research on miRNAs in DCs is required. The second part of this thesis focuses on the role of the miRNA cluster miR- 17~92 in DCs by exploring its functions in healthy and atherosclerotic mice. This thesis clearly demonstrates for the first time an anti-inflammatory and atheroprotective role for the miR17-92 cluster. A model for its mechanism is suggested.}, subject = {Aorta}, language = {en} } @phdthesis{Michalska2013, author = {Michalska, Marta}, title = {Molecular Imaging of atherosclerosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73243}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Atherosklerose ist eine aktive und progressive Erkrankung, bei der vaskul{\"a}re Adh{\"a}sionsmolek{\"u}le wie VCAM-1 eine entscheidende Rolle durch Steuerung der Rekrutierung von Immunzellen in den fr{\"u}hen und fortgeschrittenen Plaques spielen. Ein zielgerichteter Einsatz von VCAM-1-Molek{\"u}len mit spezifischen Kontrastmitteln ist daher eine M{\"o}glichkeit, die VCAM-1-Expression zu kontrollieren, Plaquewachstum ab einem fr{\"u}hen Zeitpunkt zu visualisieren und eine fr{\"u}he Pr{\"a}vention von Atherosklerose vor Beginn der Thrombusbildung zu etablieren. Des Weiteren bietet die nichtinvasive Magnetresonanz (MR)-Bildgebung den Vorteil der Kombination molekularer und morphologischer Daten. Sie erm{\"o}glicht, mithilfe von entwickelten VCAM-1-markierten Eisenoxidpartikeln, den spezifischen Nachweis entz{\"u}ndlicher Prozesse w{\"a}hrend der Atherosklerose. Diese Arbeit belegt, dass mit dem VCAM-1-Konzept eine vielversprechende Herangehensweise gefunden wurde und dass das, mit spezifischen superparamagnetischen Eisenoxid (USPIO) konjugierte VCAM-1-Peptid, gegen{\"u}ber unspezifischer USPIOs ein erh{\"o}htes Potenzial bei der Untersuchung der Atherosklerose in sich tr{\"a}gt. Im ersten Teil der Arbeit konnte im Mausmodell gezeigt werden, dass gerade das VCAM-1-Molek{\"u}l ein sinnvoller Ansatzpunkt zur Darstellung und Bildgebung von Atherosklerose ist, da in der fr{\"u}hen Phase der Entz{\"u}ndung die vaskul{\"a}ren Zelladh{\"a}sionsmolek{\"u}le {\"u}berexprimiert und auch kontinuierlich, w{\"a}hrend der fortschreitenden Plaquebildung, hochreguliert werden. Weiterhin beschreibt diese Arbeit die Funktionst{\"u}chtigkeit und das Verm{\"o}gen des neu gestalteten USPIO Kontrastmittels mit dem zyklischen Peptid, in seiner Spezialisierung auf die VCAM-1 Erkennung. Experimentelle Studien mit ultra-Hochfeld-MRT erm{\"o}glichten weitere ex vivo und in vivo Nachweise der eingesetzten USPIO-VCAM-1-Partikel innerhalb der Region um die Aortenwurzel in fr{\"u}hen und fortgeschrittenen atherosklerotischen Plaques von 12 und 30 Wochen alten Apolipoprotein E-defizienten (ApoE-/-) M{\"a}usen. Mit ihrer Kombination aus Histologie und Elektronenmikroskopie zeigt diese Studie zum ersten Mal die Verteilung von VCAM-1-markierten USPIO Partikeln nicht nur in luminalem Bereich der Plaques, sondern auch in tieferen Bereichen der medialen Muskelzellen. Dieser spezifische und sensitive Nachweis der fr{\"u}hen und fortgeschrittenen Stadien der Plaquebildung bringt auf molekularer Ebene neue M{\"o}glichkeiten zur Fr{\"u}herkennung von atherosklerotischen Plaques vor dem Entstehen von 8 Rupturen. Im Gegensatz zum USPIO-VCAM-1-Kontrastmittel scheiterten unspezifische USPIO Partikel an der Identifikation fr{\"u}her Plaqueformen und begrenzten die Visualisierung von Atherosklerose auf fortgeschrittene Stadien in ApoE-/- M{\"a}usen.}, subject = {VCAM}, language = {en} }