@phdthesis{NghengwaAche2019, author = {Nghengwa Ache, Patience}, title = {Waste Management As a Correlate of Environmental Sustainability in Sub-Saharan Africa: The Example of Imo State, Nigeria}, doi = {10.25972/OPUS-19224}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192240}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Summary Introduction. Rapid and uncontrolled industrialisation and urbanisation in most developing countries are resulting in land, air and water pollution at rates that the natural environment cannot fully renew. These contemporary environmental issues have attracted local, national and international attention. The problem of urban garbage management is associated with rapid population growth in developing countries. These are pertinent environmental crises of sustainability and sanitation in Sub-Saharan Africa and other Third World countries. Despite efforts of the various tiers of government (the case of Nigeria with three tiers: Federal, State and Local governments) in managing solid waste in urban centres, it is still overflowing open dumpsites, litters streets and encroaches into water bodies. These affect the quality of urban living conditions and the natural environment. Sub-Saharan and other developing countries are experiencing an upsurge in the accumulation and the diversity of waste including E-waste, waste agricultural biomass and waste plastics. The need for effective, sustainable and efficient management of waste through the application of 3Rs principle (Reduce, Reuse, and Recycle) is an essential element for promoting sustainable patterns of consumption and production. This study examined waste management in Imo State, Nigeria as an aspect correlated to the sustainability of its environment. Materials and methods. To analyse waste management as a correlate of environmental sustainability in Sub-Saharan Africa, Imo State, in eastern Nigeria was chosen as a study area. Issues about waste handling and its impact on the environment in Imo have been reported since its creation in 1976; passing through the State with the cleanest State capital in 1980 to a 'dunghill' in 2013 and a 'garbage capital' on October 1, 2016. Within this State, three study sites were selected - Owerri metropolis (the State capital) Orlu and Okigwe towns. At these sites, households, commercial areas, accommodation and recreational establishments and schools, as well as dumpsites were investigated to ascertain the composition, quantity, distribution, handling patterns of waste in relation to the sustainability of the State's environment. This was done conveniently but randomly through questionnaires, interviews, focus group discussions and non-participant observation; these were all heralded by a detailed deskwork. Data were entered using Microsoft Office Excel and were explored and analysed using the Statistical Package for Social Sciences - SPSS. Data were made essentially of categorical variables and were analysed using descriptive statistics. The association between categorical variables was measured using Cramer's V the Chi-Square that makes the power and the reliability of the test. Cramer's V is a measure of association tests directly integrated with cross-tabulation. The Chi-Square test of equal proportions was used to compare proportions for significant differences at 0.05 levels. The statistical package - the Epi Info 6.04d was also used since a contingency table had to be created from several sub-outputs and determine the extent of association between the row and column categories. The scale variable 'quantity of waste generated' was described using measures of central tendency. It was screened for normality using the Kolmogorov-Smirnov and Shapiro-Wilk tests for normality; in all context, the normality assumption was violated (P<0.05). Five null hypotheses were tested using Logistic Regression model. The explanatory power of individual conceptual component was calculated using the Cox \& Snell R2 and that of individual indicators was also appraised using the Likelihood Ratio test. In the context of this work, the significance of the variability explained by the model (baseline model) was appraised using the Omnibus Tests of Model Coefficients, the magnitude of this variability explained by the model using the Cox \& Snell R2 and the effects of individual predictors using the Likelihood Ratio test. Qualitatively, data from open-ended items, observations and interviews were analysed using the process of thematic analysis whereby concepts or ideas were grouped under umbrella terms or keywords. The results were presented using tables, charts, graphs, photos and maps. Findings and discussions. The total findings and analyses indicated that proper waste handling in Imo State, Nigeria has a positive impact on the environment. This was assessed by the community's awareness of waste management via sources like the radio and the TV, their education on waste management and schools' integration of environmental education in their program. Although most community members perceived the State's environment as compared to it about 10 years' back has worsened, where they were conscious of proper waste handling measures, the environment was described to be better. This influence of environmental awareness and education on environmental sustainability appraised using Logistic Regression Model, portrayed a significant variability (Omnibus Tests of Model Coefficients: χ2=42.742; P=0.014), inferring that environmental awareness and education significantly predict environmental sustainability. The findings also revealed that organic waste generation spearheaded amongst other waste types like paper, plastic, E-waste, metal, textile and glass. While waste pickers always sorted paper, plastics, aluminium and metal, some of them also sorted out textile and glass. Statistically (P<0.05), in situations where waste was least generated (i.e., 1-2kg per day), community members maintained that the environmental quality was better in comparison to 10 years' back. Waste items like broken glass and textile as well as the remains of E-waste after the extraction of copper and brass were not sorted for and these contributed more to environmental degradation. Similarly, the influence of wealth on environmental sustainability was appraised using Logistic Regression Model including development index related indicators like education, occupation, income and the ability to pay for waste disposal. Harmonising the outcome, farmers, who were mostly the least educated claimed to notice more environmental improvement. In addition, those who did not agree to pay for waste disposal who were mostly those with low income (less than 200,000 Naira, i.e. about 620 Euros monthly) perceived environmental improvement more than those with income above 200,000 Naira. This irony can be attributed to the fact that those with low educational backing lack the capacity to appreciate environmental sustainability pointers well as compared to those with a broader educational background with critical thinking. The employment and poverty reduction opportunities pertaining to waste management on environmental sustainability was appraised using qualitative thematic analysis. All community members involved in sorting, buying and selling of waste items had no second job. They attested that the money earned from their activities sustained their livelihood and families. Some expressed love for the job, especially as they were their own masters. Waste picking and trading in waste items are offering employment opportunities to many communities around the world. For instance, in the waste recycling, waste composting, waste-to-energy plants and die Stadtreiniger in W{\"u}rzburg city. The workers in these enterprises have jobs as a result of waste. Waste disposal influence on environmental sustainability was appraised using the Binary Logistic Regression Model and the variability explained by the model was significant. The validity was also supported by the Wald statistics (P<0.05), which indicates the effect of the predictors is significant. Environmental sustainability was greatly reliant on indicators like the frequency at which community members emptied their waste containers; how/where waste is disposed of, availability of disposal site or public bin near the house, etc. Imolites who asserted to have public waste bins or disposal sites near their houses maintained that the quality of the State's environment had worsened as such containers/disposal sites were always stinking as well as had animals and smoke around them. Imolites around disposal sites complained of traits like diarrhoea, catarrh, insect bites, malaria, smoke and polluted air. Conclusions. The liaison between poor waste management strategies and the sustainability of the Imo State environment was considered likely as statistically significant ineffectiveness, lack of awareness, poverty, insufficient and unrealistic waste management measures were found in this study area. In these situations, the environment was said to have not improved. Such inadequacies in the handling of generated waste did not only expose the citizenry to health dangers but also gave rise to streets and roads characterized by filth and many unattended disposal sites unleashing horrible odour to the environment and attracting wild animals. This situation is not only prevalent in Imo State, Nigeria but in many Sub-Saharan cities. Future Perspectives. To improve the environment in Sub-Saharan Africa, it is imperative to practice an inclusive and integrated sustainable waste management system. The waste quantity in this region is fast growing, especially food/organic waste. The region should aim at waste management laws and waste reduction strategies, which will help save and produce more food that it really needs. Waste management should be dissociated from epidemic outbreaks like cholera, typhoid, Lassa fever and malaria, whose vectors thrive in filthy environments. Water channels and water bodies should not be waste disposal channels or waste disposal sites.}, language = {en} } @phdthesis{Stralla2019, author = {Stralla, Markus Roland}, title = {Managerial incentives, earnings management and regulatory intervention in the banking sector}, doi = {10.25972/OPUS-17268}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172682}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Die vorliegende Dissertation umfasst drei Forschungspapiere, welche sich mit folgenden Bankenthemen besch{\"a}ftigen: Fehl-/Anreize und Risiko{\"u}bernahme, Ertragssteuerung und die Regulierung von Aufsichtsr{\"a}ten. „Do cooperative banks suffer from moral hazard behaviour? Evidence in the context of efficiency and risk": Wir verwenden Granger-Kausalit{\"a}tstechniken, um die intertemporalen Beziehungen zwischen Risiko, Effizienz und Kapital zu bewerten. Wir verwenden zwei verschiedene Maße der Effizienz, die Kosten- und Gewinneffizienz, da diese unterschiedliche Managementf{\"a}higkeiten widerspiegeln. Eine ist die F{\"a}higkeit, Kosten zu steuern, und die andere ist die M{\"o}glichkeit, Gewinne zu maximieren. Wir stellen fest, dass eine niedrigere Kosten- und Gewinneffizienz das Liquidit{\"a}tsrisiko erh{\"o}ht. Wir stellen ebenfalls fest, dass ein Anstieg des Kreditrisiko nachteilig f{\"u}r die Kosten und Gewinneffizienz ist. Am wichtigsten ist jedoch, dass unsere Ergebnisse eine positive Beziehung zwischen dem Kapital- und Kreditrisiko aufweisen, was zeigt, dass Moral Hazard Verhalten keine Anwendung (aufgrund von Haftungsbeschr{\"a}nkung und Einlagensicherung) bei unsere Stichprobe von Genossenschaftsbanken findet. Im Gegenteil, wir finden Hinweise darauf, dass Banken mit niedrigem Kapital ihre Kreditqualit{\"a}t in den Folgeperioden verbessern k{\"o}nnen. Diese Erkenntnisse k{\"o}nnen f{\"u}r die Regulierungsbeh{\"o}rden von Bedeutung sein, die bei der Einf{\"u}hrung neuer regulatorischer Kapitalbeschr{\"a}nkungen die Gesch{\"a}ftsmodelle der Banken ber{\"u}cksichtigen sollten. „Earnings Management Modelling in the Banking Industry - Evaluating valuable approaches": Die Rechungslegungsforschung hat den Bereich Earnings Management (EM) f{\"u}r die nichtfinanzielle und finanzielle Industrie gesondert untersucht. Da EM nicht direkt beobachtet werden kann, ist es f{\"u}r jede Forschungsfrage in jedem Umfeld wichtig, einen {\"u}berpr{\"u}fbare Proxy-Gr{\"o}ße f{\"u}r EM zu finden. Grunds{\"a}tzlich fehlt jedoch ein tiefes Verst{\"a}ndnis daf{\"u}r, welche Regressoren den Sch{\"a}tzvorgang verbessern k{\"o}nnen. Diese Studie versucht, diese L{\"u}cke zu schließen, und analysiert vorhandene Modellspezifikationen f{\"u}r diskretion{\"a}re Risikovorsorgen im Bankensektor, um gemeinsame und spezifische Muster zu identifizieren. Hierf{\"u}r verwenden wir einen US-Datensatz, bestehend aus den Jahren 2005-2015 und wenden g{\"a}ngige Testverfahren an, um das Ausmaß von Messfehlern, Verzerrungen aufgrund von Extrembeobachtungen und weggelassenen Variablen sowie die Vorhersagekraft der diskretion{\"a}ren Proxy-Gr{\"o}ßen zu untersuchen. Unsere Ergebnisse zeigen, dass ein gr{\"u}ndliches Verst{\"a}ndnis des methodischen Modellierungsprozesses von EM im Bankensektor wichtig ist. Die derzeit etablierten Modelle zur Sch{\"a}tzung des EM sind angemessen, jedoch optimierbar. Insbesondere identifizieren wir die Variablen der notleidenden Verm{\"o}genswerte als die wichtigste Gruppe, w{\"a}hrend Variablen der Risikovorsorge und Nettoausbuchungen einen gewissen Wert erbringen k{\"o}nnen. Dar{\"u}ber hinaus zeigen unsere Ergebnisse, dass die Nichtlinearit{\"a}t bestimmter Regressoren ein Problem sein kann, das in zuk{\"u}nftigen Untersuchungen angegangen werden sollte, w{\"a}hrend wir weiterhin einige ausgelassene und m{\"o}glicherweise korrelierte Variablen identifizieren, die einen Mehrwert generieren k{\"o}nnten. Die Ergebnisse zeigen auch, dass ein dynamischer, endogenit{\"a}t ber{\"u}cksichtigender Ansatz nicht unbedingt mit einer besseren Vorhersagekraft verkn{\"u}pft ist. „Board Regulation and its Impact on Composition and Effects - Evidence from German Cooperative Bank": In dieser Studie wird ein System-GMM-Sch{\"a}tzer verwendet, um die Auswirkungen m{\"o}glicher regulatorischer Eingriffe auf die Besetzung von Aufsichtsratspositionen bei Genossenschaftsbanken zu untersuchen. Hierf{\"u}r werden zwei verschiedene Untersuchungsdesigns angewandt. Zun{\"a}chst untersucht der Autor die {\"A}nderungen der Aufsichtsratsstruktur vor und nach der Einf{\"u}hrung des Gesetzes zur St{\"a}rkung der Finanzmarkt- und Versicherungsaufsicht (FinVAG). Zweitens sch{\"a}tzt der Autor den Einfluss von Doktoren und beruflicher Konzentration auf {\"A}nderungen des Bankrisikos unter Ber{\"u}cksichtigung der Umsetzung der FinVAG. Die untersuchte Stichprobe umfasst dabei 246 deutsche Genossenschaftsbanken in den Jahren von 2006 bis 2011. Bez{\"u}glich des Bankrisikos verwendet der Autor vier verschiedene Maße: das Kredit-, Kapital-, Liquidit{\"a}tsrisiko und den Z-Score, wobei die ersten drei ebenfalls im FinVAG adressiert werden. Die Ergebnisse zeigen, dass die Umsetzung des FinVAGs zu strukturellen {\"A}nderungen in der Zusammensetzung der Aufsichtsr{\"a}te f{\"u}hrt, insbesondere auf Kosten der Landwirte. Dar{\"u}ber hinaus wirkt sich die Umsetzung risikoreduzierend und damit wie beabsichtigt auf alle Risikokennzahlen und Beziehungen zwischen Risikokennzahlen und Aufsichtsratsmerkmalen aus. Um die komplexe Beziehung zwischen Charakteristika der Aufsichtsr{\"a}te und Risikomessgr{\"o}ßen aufzudecken, verwendet die Studie einen „two-step system-gmm" Sch{\"a}tzer, um nicht beobachtete Heterogenit{\"a}t zu ber{\"u}cksichtigen, um Endogenit{\"a}tsprobleme zu reduzieren. Die Ergebnisse k{\"o}nnen f{\"u}r Stakeholder, Aufsichtsbeh{\"o}rden, Vorgesetzte und Manager besonders relevant sein.}, subject = {Kreditgenossenschaft}, language = {en} } @phdthesis{Kreikenbohm2019, author = {Kreikenbohm, Annika Franziska Eleonore}, title = {Classifying the high-energy sky with spectral timing methods}, doi = {10.25972/OPUS-19205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192054}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Active galactic nuclei (AGN) are among the brightest and most frequent sources on the extragalactic X-ray and gamma-ray sky. Their central supermassive blackhole generates an enormous luminostiy through accretion of the surrounding gas. A few AGN harbor highly collimated, powerful jets in which are observed across the entire electromagnetic spectrum. If their jet axis is seen in a small angle to our line-of-sight (these objects are then called blazars) jet emission can outshine any other emission component from the system. Synchrotron emission from electrons and positrons clearly prove the existence of a relativistic leptonic component in the jet plasma. But until today, it is still an open question whether heavier particles, especially protons, are accelerated as well. If this is the case, AGN would be prime candidates for extragalactic PeV neutrino sources that are observed on Earth. Characteristic signatures for protons can be hidden in the variable high-energy emission of these objects. In this thesis I investigated the broadband emission, particularly the high-energy X-ray and gamma-ray emission of jetted AGN to address open questions regarding the particle acceleration and particle content of AGN jets, or the evolutionary state of the AGN itself. For this purpose I analyzed various multiwavelength observations from optical to gamma-rays over a period of time using a combination of state-of-the-art spectroscopy and timing analysis. By nature, AGN are highly variable. Time-resolved spectral analysis provided a new dynamic view of these sources which helped to determine distinct emission processes that are difficult to disentangle from spectral or timing methods alone. Firstly, this thesis tackles the problem of source classification in order to facilitate the search for interesting sources in large data archives and characterize new transient sources. I use spectral and timing analysis methods and supervised machine learning algorithms to design an automated source classification pipeline. The test and training sample were based on the third XMM-Newton point source catalog (3XMM-DR6). The set of input features for the machine learning algorithm was derived from an automated spectral modeling of all sources in the 3XMM-DR6, summing up to 137200 individual detections. The spectral features were complemented by results of a basic timing analysis as well as multiwavelength information provided by catalog cross-matches. The training of the algorithm and application to a test sample showed that the definition of the training sample was crucial: Despite oversampling minority source types with synthetic data to balance out the training sample, the algorithm preferably predicted majority source types for unclassified objects. In general, the training process showed that the combination of spectral, timing and multiwavelength features performed best with the lowest misclassification rate of \\sim2.4\\\%. The methods of time-resolved spectroscopy was then used in two studies to investigate the properties of two individual AGN, Mrk 421 and PKS 2004-447, in detail. Both objects belong to the class of gamma-ray emitting AGN. A very elusive sub-class are gamma-ray emitting Narrow Line Seyfert 1 (gNLS1) galaxies. These sources have been discovered as gamma-ray sources only recently in 2010 and a connection to young radio galaxies especially compact steep spectrum (CSS) radio sources has been proposed. The only gNLS1 on the Southern Hemisphere so far is PKS2004-447 which lies at the lower end of the luminosity distribution of gNLS1. The source is part of the TANAMI VLBI program and is regularly monitored at radio frequencies. In this thesis, I presented and analyzed data from a dedicated multiwavelength campaign of PKS 2004-447 which I and my collaborators performed during 2012 and which was complemented by individual observations between 2013 and 2016. I focussed on the detailed analysis of the X-ray emission and a first analysis of its broadband spectrum from radio to gamma-rays. Thanks to the dynamic SED I could show that earlier studies misinterpreted the optical spectrum of the source which had led to an underestimation of the high-energy emission and had ignited a discussion on the source class. I show that the overall spectral properties are consistent with dominating jet emission comprised of synchrotron radiation and inverse Compton scattering from accelerated leptons. The broadband emission is very similar to typical examples of a certain type of blazars (flat-spectrum radio quasars) and does not present any unusual properties in comparison. Interestingly, the VLBI data showed a compact jet structure and a steep radio spectrum consistent with a compact steep spectrum source. This classified PKS 2004-447 as a young radio galaxy, in which the jet is still developing. The investigation of Mrk 421 introduced the blazar monitoring program which I and collaborator have started in 2014. By observing a blazar simultaneously from optical, X-ray and gamma-ray bands during a VHE outbursts, the program aims at providing extraordinary data sets to allow for the generation of a series of dynamical SEDs of high spectral and temporal resolution. The program makes use of the dense VHE monitoring by the FACT telescope. So far, there are three sources in our sample that we have been monitoring since 2014. I presented the data and the first analysis of one of the brightest and most variable blazar, Mrk 421, which had a moderate outbreak in 2015 and triggered our program for the first time. With spectral timing analysis, I confirmed a tight correlation between the X-ray and TeV energy bands, which indicated that these jet emission components are causally connected. I discovered that the variations of the optical band were both correlated and anti-correlated with the high-energy emission, which suggested an independent emission component. Furthermore, the dynamic SEDs showed two different flaring behaviors, which differed in the presence or lack of a peak shift of the low-energy emission hump. These results further supported the hypothesis that more than one emission region contributed to the broadband emission of Mrk 421 during the observations. Overall,the studies presented in this thesis demonstrated that time-resolved spectroscopy is a powerful tool to classify both source types and emission processes of astronomical objects, especially relativistic jets in AGN, and thus provide a deeper understanding and new insights of their physics and properties.}, subject = {Astronomie}, language = {en} } @phdthesis{Griffoni2019, author = {Griffoni, Chiara}, title = {Towards advanced immunocompetent skin wound models for in vitro drug evaluation}, doi = {10.25972/OPUS-19212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192125}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Current preclinical models used to evaluate novel therapies for improved healing include both in vitro and in vivo methods. However, ethical concerns related to the use of animals as well as the poor physiological translation between animal and human skin wound healing designate in vitro models as a highly relevant and promising platforms for healing investigation. While current in vitro 3D skin models recapitulate a mature tissue with healing properties, they still represent a simplification of the in vivo conditions, where for example the inflammatory response originating after wound formation involves the contribution of immune cells. Macrophages are among the main contributors to the inflammatory response and regulate its course thanks to their plasticity. Therefore, their implementation into in vitro skin could greatly increase the physiological relevance of the models. As no full-thickness immunocompetent skin model containing macrophages has been reported so far, the parameters necessary for a successful triple co-culture of fibroblasts, keratinocytes and macrophages were here investigated. At first, cell source and culture timed but also an implementation strategy for macrophages were deter-mined. The implementation of macrophages into the skin model focused on the minimization of the culture time to preserve immune cell viability and phenotype, as the environment has a major influence on cell polarization and cytokine production. To this end, incorporation of macrophages in 3D gels prior to the combination with skin models was selected to better mimic the in vivo environment. Em-bedded in collagen hydrogels, macrophages displayed a homogeneous cell distribution within the gel, preserving cell viability, their ability to respond to stimuli and their capability to migrate through the matrix, which are all needed during the involvement of macrophages in the inflammatory response. Once established how to introduce macrophages into skin models, different culture media were evaluated for their effects on primary fibroblasts, keratinocytes and macrophages, to identify a suitable medium composition for the culture of immunocompetent skin. The present work confirmed that each cell type requires a different supplement combination for maintaining functional features and showed for the first time that media that promote and maintain a mature skin structure have negative effects on primary macrophages. Skin differentiation media negatively affected macrophages in terms of viability, morphology, ability to respond to pro- and anti-inflammatory stimuli and to migrate through a collagen gel. The combination of wounded skin equivalents and macrophage-containing gels con-firmed that culture medium inhibits macrophage participation in the inflammatory response that oc-curs after wounding. The described macrophage inclusion method for immunocompetent skin creation is a promising approach for generating more relevant skin models. Further optimization of the co-cul-ture medium will potentially allow mimicking a physiological inflammatory response, enabling to eval-uate the effects novel drugs designed for improved healing on improved in vitro models.}, subject = {Haut}, language = {en} } @phdthesis{Gross2019, author = {Groß, Heiko}, title = {Controlling Light-Matter Interaction between Localized Surface Plasmons and Quantum Emitters}, doi = {10.25972/OPUS-19209}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192097}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Metal nanostructures have been known for a long time to exhibit optical resonances via localized surface plasmons. The high electric fields in close proximity to the metal surface have prospects to dramatically change the dynamics of electronic transitions, such as an enhanced spontaneous decay rate of a single emitter. However, there have been two major issues which impede advances in the experimental realization of enhanced light-matter interaction. (i) The fabrication of high-quality resonant structures requires state-of-the-art patterning techniques in combination with superior materials. (ii) The tiny extension of the optical near-field requires precise control of the single emitter with respect to the nanostructure. This work demonstrates a solution to these problems by combining scanning probe and optical confocal microscopy. Here, a novel type of scanning probe is introduced which features a tip composed of the edge of a single crystalline gold sheet. The patterning via focused ion beam milling makes it possible to introduce a plasmonic nanoresonator directly at the apex of the tip. Numerical simulations demonstrate that the optical properties of this kind of scanning probe are ideal to analyze light-matter interaction. Detailed experimental studies investigate the coupling mechanism between a localized plasmon and single colloidal quantum dots by dynamically changing coupling strength via their spatial separation. The results have shown that weak interaction affects the shape of the fluorescence spectrum as well as the polarization. For the best probes it has been found that it is possible to reach the strong coupling regime at the single emitter level at room temperature. The resulting analysis of the experimental data and the proposed theoretical models has revealed the differences between the established far-field coupling and near-field coupling. It has been found that the broad bandwidth of plasmonic resonances are able to establish coherent coupling to multiple transitions simultaneously giving rise to an enhanced effective coupling strength. It has also been found that the current model to numerically calculate the effective mode volume is inaccurate in case of mesoscopic emitters and strong coupling. Finally, light-matter interaction is investigated by the means of a quantum-dot-decorated microtubule which is traversing a localized nearfield by gliding on kinesin proteins. This biological transport mechanism allows the parallel probing of a meta-surface with nm-precision. The results that have been put forward throughout this work have shed new light on the understanding of plasmonic light-matter interaction and might trigger ideas on how to more efficiently combine the power of localized electric fields and novel excitonic materials.}, subject = {Plasmon}, language = {en} } @article{YangRajeeveRudeletal.2019, author = {Yang, Manli and Rajeeve, Karthika and Rudel, Thomas and Dandekar, Thomas}, title = {Comprehensive Flux Modeling of Chlamydia trachomatis Proteome and qRT-PCR Data Indicate Biphasic Metabolic Differences Between Elementary Bodies and Reticulate Bodies During Infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {2350}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.02350}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189434}, year = {2019}, abstract = {Metabolic adaptation to the host cell is important for obligate intracellular pathogens such as Chlamydia trachomatis (Ct). Here we infer the flux differences for Ct from proteome and qRT-PCR data by comprehensive pathway modeling. We compare the comparatively inert infectious elementary body (EB) and the active replicative reticulate body (RB) systematically using a genome-scale metabolic model with 321 metabolites and 277 reactions. This did yield 84 extreme pathways based on a published proteomics dataset at three different time points of infection. Validation of predictions was done by quantitative RT-PCR of enzyme mRNA expression at three time points. Ct's major active pathways are glycolysis, gluconeogenesis, glycerol-phospholipid (GPL) biosynthesis (support from host acetyl-CoA) and pentose phosphate pathway (PPP), while its incomplete TCA and fatty acid biosynthesis are less active. The modeled metabolic pathways are much more active in RB than in EB. Our in silico model suggests that EB and RB utilize folate to generate NAD(P)H using independent pathways. The only low metabolic flux inferred for EB involves mainly carbohydrate metabolism. RB utilizes energy -rich compounds to generate ATP in nucleic acid metabolism. Validation data for the modeling include proteomics experiments (model basis) as well as qRT-PCR confirmation of selected metabolic enzyme mRNA expression differences. The metabolic modeling is made fully available here. Its detailed insights and models on Ct metabolic adaptations during infection are a useful modeling basis for future studies.}, language = {en} } @article{HuppRosenkranzBonfigetal.2019, author = {Hupp, Sabrina and Rosenkranz, Maaria and Bonfig, Katharina and Pandey, Chandana and Roitsch, Thomas}, title = {Noninvasive Phenotyping of Plant-Pathogen Interaction: Consecutive In Situ Imaging of Fluorescing Pseudomonas syringae, Plant Phenolic Fluorescence, and Chlorophyll Fluorescence in Arabidopsis Leaves}, series = {Frontiers in Plant Science}, volume = {10}, journal = {Frontiers in Plant Science}, number = {1239}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01239}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189425}, year = {2019}, abstract = {Plant-pathogen interactions have been widely studied, but mostly from the site of the plant secondary defense. Less is known about the effects of pathogen infection on plant primary metabolism. The possibility to transform a fluorescing protein into prokaryotes is a promising phenotyping tool to follow a bacterial infection in plants in a noninvasive manner. In the present study, virulent and avirulent Pseudomonas syringae strains were transformed with green fluorescent protein (GFP) to follow the spread of bacteria in vivo by imaging Pulse-Amplitude-Modulation (PAM) fluorescence and conventional binocular microscopy. The combination of various wavelengths and filters allowed simultaneous detection of GFP-transformed bacteria, PAM chlorophyll fluorescence, and phenolic fluorescence from pathogen-infected plant leaves. The results show that fluorescence imaging allows spatiotemporal monitoring of pathogen spread as well as phenolic and chlorophyll fluorescence in situ, thus providing a novel means to study complex plant-pathogen interactions and relate the responses of primary and secondary metabolism to pathogen spread and multiplication. The study establishes a deeper understanding of imaging data and their implementation into disease screening.}, language = {en} } @phdthesis{Kaufmann2019, author = {Kaufmann, Christina}, title = {Discrete Supramolecular Architectures of Bay-linked Perylene Bisimide Dimers by Self-Assembly and Folding}, doi = {10.25972/OPUS-17300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Supramolecular self-assembly of perylene bisimide (PBI) dyes via non-covalent forces gives rise to a high number of different PBI architectures with unique optical and functional properties. As these properties can be drastically influenced by only slightly structural changes of the formed supramolecular ensembles (Chapter 2.1) the controlled self-assembly of PBI dyes became a central point of current research to design innovative materials with a high potential for different applications as for example in the fields of organic electronics or photovoltaics. As PBI dyes show a strong tendency to form infinite aggregated structures (Chapter 2.2) the aim of this thesis was to precisely control their self-assembly to create small, structurally well-defined PBI assemblies in solution. Chapter 2.3 provides an overview on literature known strategies that were established to realize this aim. It could be demonstrated that especially backbone-directed intra- and intermolecular self-assembly of covalently linked Bis-PBI dyes evolved as one of the most used strategies to define the number of stacked PBI chromophores by using careful designed spacer units with regard to their length and flexibility. By using conventional spectroscopic methods like UV/Vis and fluorescence experiments in combination with NMR measurements an in-depth comparison of the molecular and optical properties in solution both in the non-stacked and aggregated state of the target compounds could be elucidated to reveal structure-property relationships of different PBI architectures. Thus, it could be demonstrated, that spacer units that pre-organize two PBI chromophores with an inter-planar distance of r < 7 {\AA} lead to an intramolecular folding, whereas linker moieties with a length between 7 to 11 {\AA} result in an intermolecular self-assembly of the respective Bis-PBIs dyes via dimerization to form well-defined quadruple PBI pi-stacks. Hence, if the used spacer units ensure an inter-planar distance r > 14 {\AA} larger oligomeric PBI pi-stacks are generated. In Chapter 4 a detailed analysis of the exciton coupling in a highly defined H-aggregate quadruple PBI pi-stack is presented. Therefore, bay-tethered PBI dye Bis-PBI 1 was investigated by concentration-dependent UV/Vis spectroscopy in THF and toluene as well as by 2D-DOSY-NMR spectroscopy, ESI mass spectrometry and AFM measurements confirming that Bis-PBI 1 self-assembles exclusively into dimers with four closely pi-stacked PBI chromophores. Furthermore, with the aid of broadband fluorescence upconversion spectroscopy (FLUPS) ensuring broadband detection range and ultrafast time resolution at once, ultrafast Frenkel exciton relaxation and excimer formation dynamics in the PBI quadruple pi-stack within 1 ps was successfully investigated in cooperation with the group of Dongho Kim. Thus, it was possible to gain for the first time insights into the exciton dynamics within a highly defined synthetic dye aggregate beyond dimers. By analysing the vibronic line shape in the early-time transient fluorescence spectra in detail, it could be demonstrated that the Frenkel exciton is entirely delocalized along the quadruple stack after photoexcitation and immediately loses its coherence followed by the formation of the excimer state. In Chapter 5 four well-defined Bis-PBI folda-dimers Bis-PBIs 2-4 were introduced, where linker units of different length (r < 7 {\AA}) and steric demand were used to gain distinct PBI dye assemblies in the folded state. Structural elucidation based on in-depth UV/Vis, CD and fluorescence experiments in combination with 1D and 2D NMR studies reveals a stacking of the two PBI chromophores upon folding, where geometry-optimized structures obtained from DFT calculations suggest only slightly different arrangements of the PBI units enforced by the distinct spacer moieties. With the resulting optical signatures of Bis-PBIs 2-4 ranging from conventional Hj-type to monomer like absorption features, the first experimental proof of a PBI-based "null-aggregate" could be presented, in which long- and short-range exciton coupling fully compensate each other. Hence, the insights of this chapter pinpoint the importance of charge-transfer mediated short-range exciton coupling that can significantly influence the properties of pi-stacked PBI chromophores In the last part of this thesis (Chapter 6), spacer-controlled self-assembly of four bay-linked Bis-PBI dyes Bis-PBIs 5-8 into well-defined supramolecular architectures was investigated, where the final aggregate structures are substantially defined by the nature of the used spacer units. By systematically extending the backbone length from 7 to 15 {\AA} defining the inter-planar distance between the tethered chromophores, different assemblies from defined quadruple PBI pi-stacks to larger oligomeric pi-stacks could be gained upon aggregation. In conclusion, the synthesis of nine covalently linked PBI dyes in combination with a detailed investigation of their spacer-mediated self-assembly behaviour in solution concerning structure-properties-relationships was presented within this thesis. The results confirm a strong exciton coupling in different types of Bis-PBI architectures e.g. folda-dimers or highly defined quadruple pi-stacks, which significantly influences their optical properties upon self-assembly.}, subject = {Supramolekulare Chemie}, language = {en} } @unpublished{HuberPresWittmannetal.2019, author = {Huber, Bernhard and Pres, Sebastian and Wittmann, Emanuel and Dietrich, Lysanne and L{\"u}ttig, Julian and Fersch, Daniel and Krauss, Enno and Friedrich, Daniel and Kern, Johannes and Lisinetskii, Victor and Hensen, Matthias and Hecht, Bert and Bratschitsch, Rudolf and Riedle, Eberhard and Brixner, Tobias}, title = {Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate}, issn = {0034-6748}, doi = {10.1063/1.5115322}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191906}, year = {2019}, abstract = {We describe a setup for time-resolved photoemission electron microscopy (TRPEEM) with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215-970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications. Efficient photoemission from plasmonic Au nanoresonators is investigated with phase-coherent pulse pairs from an actively stabilized interferometer. More complex excitation fields are created with a liquid-crystal-based pulse shaper enabling amplitude and phase shaping of NOPA pulses with spectral components from 600 to 800 nm. With this system we demonstrate spectroscopy within a single plasmonic nanoslit resonator by spectral amplitude shaping and investigate the local field dynamics with coherent two-dimensional (2D) spectroscopy at the nanometer length scale ("2D nanoscopy"). We show that the local response varies across a distance as small as 33 nm in our sample. Further, we report two-color pump-probe experiments using two independent NOPA beamlines. We extract local variations of the excited-state dynamics of a monolayered 2D material (WSe2) that we correlate with low-energy electron microscopy (LEEM) and reflectivity (LEER) measurements. Finally, we demonstrate the in-situ sample preparation capabilities for organic thin films and their characterization via spatially resolved electron diffraction and dark-field LEEM.}, language = {en} } @phdthesis{Njovu2019, author = {Njovu, Henry Kenneth}, title = {Patterns and drivers of herbivore diversity and invertebrate herbivory along elevational and land use gradients at Mt. Kilimanjaro, Tanzania}, doi = {10.25972/OPUS-17254}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172544}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This thesis elucidates patterns and drivers of invertebrate herbivory, herbivore diversity, and community-level biomass along elevational and land use gradients at Mt. Kilimanjaro, Tanzania. Chapter I provides background information on the response and predictor variables, study system, and the study design. First, I give an overview of the elevational patterns of species diversity/richness and herbivory published in the literature. The overview illuminates existing debates on elevational patterns of species diversity/richness and herbivory. In connection to these patterns, I also introduce several hypotheses and mechanisms put forward to explain macroecological patterns of species richness. Furthermore, I explain the main variables used to test hypotheses. Finally, I describe the study system and the study design used. Chapter II explores the patterns of invertebrate herbivory and their underlying drivers along extensive elevational and land use gradients on the southern slopes of Mt. Kilimanjaro. I recorded standing leaf herbivory from leaf chewers, leaf miners and gall-inducing insects on 55 study sites located in natural and anthropogenic habitats distributed from 866 to 3060 meters above sea level (m asl) on Mt. Kilimanjaro. Standing leaf herbivory was related to climatic variables [mean annual temperature - (MAT) and mean annual precipitation - (MAP)], net primary productivity (NPP) and plant functional traits (leaf traits) [specific leaf area (SLA), carbon to nitrogen ratio (CN), and nitrogen to phosphorous ratio (NP)]. Results revealed an unimodal pattern of total leaf herbivory along the elevation gradient in natural habitats. Findings also revealed differences in the levels and patterns of herbivory among feeding guilds and between anthropogenic and natural habitats. Changes in NP and CN ratios which were closely linked to NPP were the strongest predictors of leaf herbivory. Our study uncovers the role of leaf nutrient stoichiometry and its linkages to climate in explaining the variation in leaf herbivory along climatic gradients. Chapter III presents patterns and unravels direct and indirect effects of resource (food) abundance (NPP), resource (food) diversity [Functional Dispersion (FDis)], resource quality (SLA, NP, and CN rations), and climate variables (MAT and MAP) on species diversity of phytophagous beetles. Data were collected from 65 study sites located in natural and anthropogenic habitats distributed from 866 to 4550 m asl on the southern slopes of Mt. Kilimanjaro. Sweep net and beating methods were used to collect a total of 3,186 phytophagous beetles representing 21 families and 304 morphospecies. Two groups, weevils (Curculionidae) and leaf beetles (Chrysomelidae) were the largest and most diverse families represented with 898 and 1566 individuals, respectively. Results revealed complex (bimodal) and dissimilar patterns of Chao1-estimated species richness (hereafter referred to as species diversity) along elevation and land use gradients. Results from path analysis showed that temperature and climate-mediated changes in NPP had a significant positive direct and indirect effect on species diversity of phytophagous beetles, respectively. The results also revealed that the effect of NPP (via beetles abundance and diversity of food resources) on species diversity is stronger than that of temperature. Since we found that factors affecting species diversity were intimately linked to climate, I concluded that predicted climatic changes over the coming decades will likely alter the species diversity patterns which we observe today. Chapter IV presents patterns and unravels the direct and indirect effects of climate, NPP and anthropogenic disturbances on species richness and community-level biomass of wild large mammals which represent endothermic organisms and the most important group of vertebrate herbivores. Data were collected from 66 study sites located in natural and anthropogenic habitats distributed from 870 to 4550 m asl on the southern slopes of Mt. Kilimanjaro. Mammals were collected using camera traps and used path analysis to disentangle the direct and indirect effects of climatic variables, NPP, land use, land area, levels of habitat protection and occurrence of domesticated mammals on the patterns of richness and community-level biomass of wild mammals, respectively. Results showed unimodal patterns for species richness and community-level biomass of wild mammals along elevation gradients and that the patterns differed depending on the type of feeding guild. Findings from path analysis showed that net primary productivity and levels of habitat protection had a strong direct effect on species richness and community-level biomass of wild mammals whereas temperature had an insignificant direct effect. Findings show the importance of climate-mediated food resources in determining patterns of species richness of large mammals. While temperature is among key predictors of species richness in several ectotherms, its direct influence in determining species richness of wild mammals was insignificant. Findings show the sensitivity of wild mammals to anthropogenic influences and underscore the importance of protected areas in conserving biodiversity. In conclusion, despite a multitude of data sets on species diversity and ecosystem functions along broad climatic gradients, there is little mechanistic understanding of the underlying causes. Findings obtained in the three studies illustrate their contribution to the scientific debates on the mechanisms underlying patterns of herbivory and diversity along elevation gradients. Results present strong evidence that plant functional traits play a key role in determining invertebrate herbivory and species diversity along elevation gradients and that, their strong interdependence with climate and anthropogenic activities will shape these patterns in future. Additionally, findings from path analysis demonstrated that herbivore diversity, community-level biomass, and herbivory are strongly influenced by climate (either directly or indirectly). Therefore, the predicted climatic changes are expected to dictate ecological patterns, biotic interactions, and energy and nutrient fluxes in terrestrial ecosystems in the coming decades with stronger impacts probably occurring in natural ecosystems. Furthermore, findings demonstrated the significance of land use effects in shaping ecological patterns. As anthropogenic pressure is advancing towards more pristine higher elevations, I advocate conservation measures which are responsive to and incorporate human dimensions to curb the situation. Although our findings emanate from observational studies which have to take several confounding factors into account, we have managed to demonstrate global change responses in real ecosystems and fully established organisms with a wide range of interactions which are unlikely to be captured in artificial experiments. Nonetheless, I recommend additional experimental studies addressing the effect of top-down control by natural enemies on herbivore diversity and invertebrate herbivory in order to deepen our understanding of the mechanisms driving macroecological patterns along elevation gradients.  }, subject = {Species richness}, language = {en} }