@phdthesis{Boesl2008, author = {B{\"o}sl, Maria}, title = {Charakterisierung des Zwei-Partner-Sekretionssystems von Meningokokken}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28810}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Ein Proteintransportsystem genannt Zwei-Partner-Sekretionssystem ist bei gram-negativen Bakterien weit verbreitet. In B. pertussis ist es bereits ausf{\"u}hrlich untersucht. Diese Arbeit widmet sich dem Zwei-Partner-Sekretionssystem in Meningokokken.}, subject = {Neisseria meningitidis}, language = {de} } @article{BrehonyTrotterRamsayetal.2014, author = {Brehony, Carina and Trotter, Caronline L. and Ramsay, Mary E. and Chandra, Manosree and Jolley, Keith A. and van der Ende, Arie and Carion, Fran{\c{c}}oise and Berthelsen, Lene and Hoffmann, Steen and Harðard{\´o}ttir, Hj{\"o}rd{\´i}s and Vazques, Julio A. and Murphy, Karen and Toropainen, Maija and Cani{\c{c}}a, Manuela and Ferreira, Eugenia and Diggle, Mathew and Edwards, Giles F. and Taha, Muhamed-Kheir and Stefanelli, Paola and Kriz, Paula and Gray, Steve J. and Fox, Andrew J. and Jacobsson, Susanne and Claus, Heike and Vogel, Ulrich and Tzanakaki, Georgina and Heuberger, Sigrid and Caugant, Dominique A. and Frosch, Matthias and Maiden, Martin C. J.}, title = {Implications of Differential Age Distribution of Disease-Associated Meningococcal Lineages for Vaccine Development}, series = {Clinical and Vaccine Immunology : CVI}, volume = {21}, journal = {Clinical and Vaccine Immunology : CVI}, number = {6}, doi = {10.1128/cvi.00133-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120808}, pages = {847-53}, year = {2014}, abstract = {New vaccines targeting meningococci expressing serogroup B polysaccharide have been developed, with some being licensed in Europe. Coverage depends on the distribution of disease-associated genotypes, which may vary by age. It is well established that a small number of hyperinvasive lineages account for most disease, and these lineages are associated with particular antigens, including vaccine candidates. A collection of 4,048 representative meningococcal disease isolates from 18 European countries, collected over a 3-year period, were characterized by multilocus sequence typing (MLST). Age data were available for 3,147 isolates. The proportions of hyperinvasive lineages, identified as particular clonal complexes (ccs) by MLST, differed among age groups. Subjects <1 year of age experienced lower risk of sequence type 11 (ST-11) cc, ST-32 cc, and ST-269 cc disease and higher risk of disease due to unassigned STs, 1- to 4-year-olds experienced lower risk of ST-11 cc and ST-32 cc disease, 5- to 14-year-olds were less likely to experience ST-11 cc and ST-269 cc disease, and ≥25-year-olds were more likely to experience disease due to less common ccs and unassigned STs. Younger and older subjects were vulnerable to a more diverse set of genotypes, indicating the more clonal nature of genotypes affecting adolescents and young adults. Knowledge of temporal and spatial diversity and the dynamics of meningococcal populations is essential for disease control by vaccines, as coverage is lineage specific. The nonrandom age distribution of hyperinvasive lineages has consequences for the design and implementation of vaccines, as different variants, or perhaps targets, may be required for different age groups.}, language = {en} } @article{BrehmKoziolRauschendorferetal.2014, author = {Brehm, Klaus and Koziol, Uriel and Rauschendorfer, Theresa and Rodr{\´i}guez, Luis Zanon and Krohne, Georg}, title = {The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis}, doi = {10.1186/2041-9139-5-10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110315}, year = {2014}, abstract = {Background It is believed that in tapeworms a separate population of undifferentiated cells, the germinative cells, is the only source of cell proliferation throughout the life cycle (similar to the neoblasts of free living flatworms). In Echinococcus multilocularis, the metacestode larval stage has a unique development, growing continuously like a mass of vesicles that infiltrate the tissues of the intermediate host, generating multiple protoscoleces by asexual budding. This unique proliferation potential indicates the existence of stem cells that are totipotent and have the ability for extensive self-renewal. Results We show that only the germinative cells proliferate in the larval vesicles and in primary cell cultures that undergo complete vesicle regeneration, by using a combination of morphological criteria and by developing molecular markers of differentiated cell types. The germinative cells are homogeneous in morphology but heterogeneous at the molecular level, since only sub-populations express homologs of the post-transcriptional regulators nanos and argonaute. Important differences are observed between the expression patterns of selected neoblast marker genes of other flatworms and the E. multilocularis germinative cells, including widespread expression in E. multilocularis of some genes that are neoblast-specific in planarians. Hydroxyurea treatment results in the depletion of germinative cells in larval vesicles, and after recovery following hydroxyurea treatment, surviving proliferating cells grow as patches that suggest extensive self-renewal potential for individual germinative cells. Conclusions In E. multilocularis metacestodes, the germinative cells are the only proliferating cells, presumably driving the continuous growth of the larval vesicles. However, the existence of sub-populations of the germinative cells is strongly supported by our data. Although the germinative cells are very similar to the neoblasts of other flatworms in function and in undifferentiated morphology, their unique gene expression pattern and the evolutionary loss of conserved stem cells regulators suggest that important differences in their physiology exist, which could be related to the unique biology of E. multilocularis larvae.}, language = {en} } @article{BrehmKoziolKrohne2013, author = {Brehm, Klaus and Koziol, Uriel and Krohne, Georg}, title = {Anatomy and development of the larval nervous system in Echinococcus multilocularis}, series = {Frontiers in Zoology}, journal = {Frontiers in Zoology}, doi = {10.1186/1742-9994-10-24}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96504}, year = {2013}, abstract = {Background The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. Results We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. Conclusions We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system present in the bladder tissue of other taeniids. The detailed description of the development and anatomy of the protoscolex neuromuscular system is a necessary first step toward the understanding of the developmental mechanisms operating in these peculiar larval stages.}, language = {en} } @article{BrehmKoziol2014, author = {Brehm, Klaus and Koziol, Uriel}, title = {On the importance of targeting parasite stem cells in anti-echinococcosis drug development}, series = {Parasite}, volume = {21}, journal = {Parasite}, issn = {1252-607X}, doi = {10.1051/parasite/2014070}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118030}, pages = {72}, year = {2014}, abstract = {The life-threatening diseases alveolar and cystic echinococcoses are caused by larvae of the tapeworms Echinococcus multilocularis and E. granulosus, respectively. In both cases, intermediate hosts, such as humans, are infected by oral uptake of oncosphere larvae, followed by asexual multiplication and almost unrestricted growth of the metacestode within host organs. Besides surgery, echinococcosis treatment relies on benzimidazole-based chemotherapy, directed against parasite beta-tubulin. However, since beta-tubulins are highly similar between cestodes and humans, benzimidazoles can only be applied at parasitostatic doses and are associated with adverse side effects. Mostly aiming at identifying alternative drug targets, the nuclear genome sequences of E. multilocularis and E. granulosus have recently been characterized, revealing a large number of druggable targets that are expressed by the metacestode. Furthermore, recent cell biological investigations have demonstrated that E. multilocularis employs pluripotent stem cells, called germinative cells, which are the only parasite cells capable of proliferation and which give rise to all differentiated cells. Hence, the germinative cells are the crucial cell type mediating proliferation of E. multilocularis, and most likely also E. granulosus, within host organs and should also be responsible for parasite recurrence upon discontinuation of chemotherapy. Interestingly, recent investigations have also indicated that germinative cells might be less sensitive to chemotherapy because they express a beta-tubulin isoform with limited affinity to benzimidazoles. In this article, we briefly review the recent findings concerning Echinococcus genomics and stem cell research and propose that future research into anti-echinococcosis drugs should also focus on the parasite's stem cell population.}, language = {en} } @article{BrehmKomguepNonoLutz2014, author = {Brehm, Klaus and Komguep Nono, Justin and Lutz, Manfred B.}, title = {EmTIP, a T-Cell Immunomodulatory Protein Secreted by the Tapeworm Echinococcus multilocularis Is Important}, doi = {10.1371/journal.pntd.0002632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111407}, year = {2014}, abstract = {Background Alveolar echinococcosis (AE), caused by the metacestode of the tapeworm Echinococcus multilocularis, is a lethal zoonosis associated with host immunomodulation. T helper cells are instrumental to control the disease in the host. Whereas Th1 cells can restrict parasite proliferation, Th2 immune responses are associated with parasite proliferation. Although the early phase of host colonization by E. multilocularis is dominated by a potentially parasitocidal Th1 immune response, the molecular basis of this response is unknown. Principal Findings We describe EmTIP, an E. multilocularis homologue of the human T-cell immunomodulatory protein, TIP. By immunohistochemistry we show EmTIP localization to the intercellular space within parasite larvae. Immunoprecipitation and Western blot experiments revealed the presence of EmTIP in the excretory/secretory (E/S) products of parasite primary cell cultures, representing the early developing metacestode, but not in those of mature metacestode vesicles. Using an in vitro T-cell stimulation assay, we found that primary cell E/S products promoted interferon (IFN)-γ release by murine CD4+ T-cells, whereas metacestode E/S products did not. IFN-γ release by T-cells exposed to parasite products was abrogated by an anti-EmTIP antibody. When recombinantly expressed, EmTIP promoted IFN-γ release by CD4+ T-cells in vitro. After incubation with anti-EmTIP antibody, primary cells showed an impaired ability to proliferate and to form metacestode vesicles in vitro. Conclusions We provide for the first time a possible explanation for the early Th1 response observed during E. multilocularis infections. Our data indicate that parasite primary cells release a T-cell immunomodulatory protein, EmTIP, capable of promoting IFN-γ release by CD4+ T-cells, which is probably driving or supporting the onset of the early Th1 response during AE. The impairment of primary cell proliferation and the inhibition of metacestode vesicle formation by anti-EmTIP antibodies suggest that this factor fulfills an important role in early E. multilocularis development within the intermediate host.}, language = {en} } @article{BrehmHemerKonradetal.2014, author = {Brehm, Klaus and Hemer, Sarah and Konrad, Christian and Spiliotis, Markus and Koziol, Uriel and Schaack, Dominik and F{\"o}rster, Sabine and Gelmedin, Verena and Stadelmann, Britta and Dandekar, Thomas and Hemphill, Andrew}, title = {Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development}, doi = {10.1186/1741-7007-12-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110357}, year = {2014}, abstract = {Background The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. Results Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. Conclusions Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.}, language = {en} } @article{BijuSchwarzLinkeetal.2011, author = {Biju, Joseph and Schwarz, Roland and Linke, Burkhard and Blom, Jochen and Becker, Anke and Claus, Heike and Goesmann, Alexander and Frosch, Matthias and M{\"u}ller, Tobias and Vogel, Ulrich and Schoen, Christoph}, title = {Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0018441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137960}, pages = {e18441}, year = {2011}, abstract = {Background Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40\% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.}, language = {en} } @phdthesis{Bernthaler2009, author = {Bernthaler, Peter}, title = {Charakterisierung und Funktionsanalyse von EmRSK4, einem TGF-beta Typ II-Rezeptor aus Echinococcus multilocularis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37244}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die Alveol{\"a}re Echinokokkose ist eine bedeutende, gef{\"a}hrliche Parasitose des Menschen. {\"U}ber die molekularen Grundlagen und Mechanismen der Wirt-Parasit- Interaktion ist bislang nur wenig bekannt. In den letzten Jahren konnten Hinweise erlangt werden, dass Wirt und Parasit {\"u}ber evolutionsgeschichtlich konservierte Signalsysteme kommunizieren. Eines dieser Systeme ist das TGF-b/BMP-Signaltransduktionssystem. TGF-\&\#946;-Signaltransduktionskomponenten steuern grundlegende Prozesse der Entwicklung und Differenzierung in allen Tieren. {\"U}ber dieses Signalsystem wird ein weites Spektrum von zellul{\"a}ren Prozessen wie Proliferation, Apoptose und Differenzierung reguliert. Dieses System besteht aus strukturell verwandten Zytokinen der TGF-\&\#946; (transforming growth factor \&\#946;) bzw. BMP (bone morphogenetic protein)-Familie, membranst{\"a}ndigen Rezeptoren der TGF-\&\#946;-Rezeptorfamilie (Typ I und Typ II) sowie intrazellul{\"a}ren Signaltransduktoren der Smad-Familie. Bislang konnten verschiedene Echinokokken Smad-Faktoren (EmSmadA, EmSmadB, EmSmadC und EmSmadD) sowie drei Echinokokken Rezeptoren der Typ I Familie (EmRSK1, EmRSK2, EmRSK3) in E. multilocularis identifiziert werden. Ein Mitglied der TGF-\&\#946; Typ II-Rezeptorfamilie war bislang noch nicht beschrieben. In dieser Arbeit wird ein solches Molek{\"u}l vorgestellt, EmRSK4 (=TGF-b Typ IISerin/ Threonin Kinase Rezeptor aus Echinococcus multilocularis). Genexpressionsanalysen und immunhistochemische Untersuchungen zeigen an, dass EmRSK4 in der Germinalschicht des E. multilocularis Metacestoden zusammen mit EmRSK1 (=BMP Typ I-Serin/Threonin Kinase Rezeptor) exprimiert wird. Studien an heterolog exprimierten Rezeptoren zeigten, dass EmRSK4 funktionell aktiv ist und mit humanen Typ I-Rezeptoren einen Komplex bilden kann. Diese Studien zeigen auch, dass EmRSK4 mit EmRSK1 einen aktiven heterologen Typ I-/Typ II-Rezeptorkomplex in HEK293-T Zellen bildet, der durch Wirts-BMP2 stimuliert wird und EmSmadB aktiviert. In Untersuchungen mit EmRSK2 (= TGF-\&\#946; Typ ISerin/ Threonin Kinase Rezeptor) konnte gezeigt werden, dass bei Anwesenheit beider Rezeptoren, EmRSK2 und EmRSK4, eine Phosphorylierung von EmSmadC nachweisbar ist, w{\"a}hrend eine Phosphorylierung von EmSmadA auch ohne die Anwesenheit von EmRSK4 stattfindet. Desweiteren konnte gezeigt werden, dass der Inhibitor SB-431452 die Kinaseaktivit{\"a}t von EmRSK2 hemmt. Nach Zugabe von exogenem BMP2 zu Metazestodenvesikel konnten Hinweise erhalten werden, dass ein bislang noch nicht charakterisiertes, zus{\"a}tzliches EmSmad aktiviert wird. Zusammengenommen l{\"a}sst die Co-Expression von EmRSK1 mit EmRSK4 in der Germinalschicht, die Bildung eines BMP-responsiven Komplexes aus beiden Rezeptoren und die Phosphorylierung mindestens eines zellul{\"a}ren Faktors nach exogener Zugabe von Wirts-BMP2 zu Metacestodenvesikeln darauf schließen, dass beide Rezeptoren w{\"a}hrend einer Infektion an der Sensierung von BMP Signalen des Wirts beteiligt sein k{\"o}nnten}, subject = {Fuchsbandwurm}, language = {de} } @phdthesis{Berg2008, author = {Berg, Thorsten}, title = {Virulenzregulationskaskade und Chitobiose-Metabolismus in Vibrio cholerae}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28293}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Vibrio cholerae, der Erreger der gastrointestinalen Erkrankung Cholera, ist ein Gram- negatives, fakultativ anaerobes gekr{\"u}mmtes St{\"a}bchenbakterium und zugleich der wohl bekannteste Vertreter der Familie Vibrionaceae. Es persisitiert die meiste Zeit in aquatischen {\"O}kosystemen wie Fl{\"u}ssen, Seen oder Meeresk{\"u}sten, wo das Bakterium meist mit Crustaceen oder anderen Organismen mit Chitin-haltigen Oberfl{\"a}chen assoziiert vorliegt. {\"U}ber orale Aufnahme kontaminierter Lebensmittel oder von Wasser kann das Bakterium in den menschlichen Organismus gelangen und dort den oberen D{\"u}nndarmbereich kolonisieren, wo letztlich durch verschiedene Virulenzfaktoren, aber haupts{\"a}chlich durch das Cholera-Toxin, die Symptomatik der Cholera ausgel{\"o}st wird. V. cholerae ist somit sowohl in seiner nat{\"u}rlichen Umgebung, als auch im humanen Wirt h{\"o}chst unterschiedlichen Umweltbedingungen ausgesetzt. Diese alternierenden Umweltreize stellen verschiedene Anforderungen an die Expressions- und Regulationsf{\"a}higkeiten von Proteinbiosynthesen des Bakteriums dar. Die Notwendigkeit einer raschen Adaption setzt daher vielf{\"a}ltige und komplexe Genregulationsmechanismen voraus. Im ersten Teil der hier vorliegenden Arbeit sollte die Genregulation des chs-Operons untersucht werden. Als Grundlage dienten hierbei Hinweise, nach welchen dieses Operon als putatives PTS eine Rolle f{\"u}r den Metabolismus von dem Chitin-Derivat Chitobiose spielen k{\"o}nnte. Zudem sollte der Einfluss des aus Escherichia coli bekannten Repressors Mlc auf die Expression des Operons tiefer gehend untersucht werden. Im Rahmen dieser Arbeit war es gelungen, das als ChsR benannte Protein eindeutig als spezifischen LacI-{\"a}hnlichen Repressor f{\"u}r das chs-Operon zu best{\"a}tigen. Weiter konnte auch eine cAMP-abh{\"a}ngige Expressionsinduktion best{\"a}tigt werden, welche sich allerdings nur bei inaktiven ChsR durchsetzen kann. Als spezifischer Induktor f{\"u}r den Repressor ChsR konnte Chitobiose (GlcN)2 identifiziert werden, welches zwar bei dem in dieser Arbeit verwendeten O1-Stamm SP27459-S nicht als alleinige Kohlenstoffquelle dienen kann, aber unter induktiven Konzentrationen die Repressoreigenschaft von ChsR inhibiert. Zugleich konnte ChsC als f{\"u}r den Import des Induktors Chitobiose verantwortliches Protein identifiziert werden. Weiter nicht eindeutig zu kl{\"a}ren blieb der Einfluss von Mlc auf das chs-Operon. Zwar konnte der aktivierende Effekt von Mlc auf die chs-Expression durch Komplementation best{\"a}tigt werden, der genaue Mechanismus bleibt jedoch weiterhin unbekannt und bedarf weiterer Untersuchungen. Einzig der Einfluss von Mlc auf den Chitobiose-Import konnte ausgeschlossen werden. Im zweiten Teil dieser Arbeit sollte der weitaus komplexere Mechanismus der Virulenzgenregulation untersucht werden. Im Fokus stand hierbei der Hauptvirulenz-genregulator ToxR und dessen Abh{\"a}ngigkeit von der periplasmatischen Protease DegS. Anhand unterschiedlicher Experimente auf Promotoraktivit{\"a}ts-, mRNA- und Proteinebene konnte eine Abnahme der ToxR-Aktivit{\"a}t in der degS-Knockout Mutante beobachtet werden, was auf eine Aktivierung von ToxR durch DegS schließen l{\"a}sst. Weiter konnte eine Abh{\"a}ngigkeit der Aktivit{\"a}t von ToxR von der ebenfalls DegS-abh{\"a}ngigen RpoE-Signalkaskade ausgeschlossen werden. Auch konnte gezeigt werden, dass die Integrit{\"a}t von ToxR durch ToxS, nicht aber durch DegS bestimmt wird. Der exakte Mechanismus der DegS-induzierten ToxR-Aktivierung konnte im Rahmen dieser Arbeit nicht mehr ermittelt werden. Es wurden jedoch Hinweise darauf gewonnen, dass eine direkte ToxR-DegS-Interaktion im periplasmatischen Raum stattfinden k{\"o}nnte. Die in dieser Arbeit gewonnen Erkenntnisse hinsichtlich der ToxR-Regulation durch DegS bieten sowohl eine interessante neue Perspektive der Funktionsweise der periplasmatischen Protease DegS, als auch eine breite Grundlage f{\"u}r weitergehende Untersuchungen bez{\"u}glich der Aktivierung des wichtigsten Virulenzregulators ToxR in V. cholerae.}, subject = {Cholerae}, language = {de} }