@phdthesis{Bach2006, author = {Bach, Peter}, title = {Growth and characterization of NiMnSb-based heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17771}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In this work heterostructures based on the half-Heusler alloy NiMnSb have been fabricated and characterized. NiMnSb is a member of the half-metallic ferromagnets, which exhibit an electron spin-polarization of 100\% at the Fermi-level. For fabrication of these structures InP substrates with surface orientations of (001),(111)A and (111)B have been used. The small lattice mismatch of NiMnSb to InP allows for pseudomorphic layers, the (111) orientation additionally makes the formation of a half-metallic interface possible. For the growth on InP(001), procedures for the substrate preparation, growth of the lattice matched (In,Ga)As buffer layer and of the NiMnSb layer have been developed. The effect of flux-ratios and substrate temperatures on the MBE growth of the buffer as well as of the NiMnSb layer have been investigated and the optimum conditions have been pointed out. NiMnSb grows in the layer-by-layer Frank-van der Merwe growth mode, which can be seen by the intensity oscillations of the RHEED specular spot during growth. RHEED and LEED measurements show a flat surface and a well-defined surface reconstruction. High resolution x-ray measurements support this statement, additionally they show a high crystalline quality. Measurements of the lateral and the vertical lattice constant of NiMnSb films on (001) oriented substrates show that layers above a thickness of 20nm exhibit a pseudomorphic as well as a relaxed part in the same layer. Whereas layers around 40nm show partly relaxed partitions, these partitions are totally relaxed for layers above 100nm. However, even these layers still have a pseudomorphic part. Depth-dependent x-ray diffraction experiments prove that the relaxed part of the samples is always on top of the pseudomorphic part. The formation and propagation of defects in these layers has been investigated by TEM. The defects nucleate early during growth and spread until they form a defect network at a thickness of about 40nm. These defects are not typical misfit dislocations but rather antiphase boundaries which evolve in the Mn/Sb sublattice of the NiMnSb system. Dependent on the thickness of the NiMnSb films different magnetic anisotropies can be found. For layers up to 15nm and above 25nm a clear uniaxial anisotropy can be determined, while the layers with thicknesses in between show a fourfold anisotropy. Notably the easy axis for the thin layers is perpendicular to the easy axis observed for the thick layers. Thin NiMnSb layers show a very good magnetic homogeneity, as can be seen by the very small FMR linewidth of 20Oe at 24GHz. However, the increase of the linewidth with increasing thickness shows that the extrinsic damping gets larger for thicker samples which is a clear indication for magnetic inhomogeneities introduced by crystalline defects. Also, the magnetic moment of thick NiMnSb is reduced compared to the theoretically expected value. If a antiferromagnetic material is deposited on top of the NiMnSb, a clear exchange biasing of the NiMnSb layer can be observed. In a further step the epitaxial layers of the semiconductor ZnTe have been grown on these NiMnSb layers, which enables the fabrication of NiMnSb/ZnTe/NiMnSb TMR structures. These heterostructures are single crystalline and exhibit a low surface and interface roughness as measured by x-ray reflectivity. Magnetic measurements of the hysteresis curves prove that both NiMnSb layers in these heterostructures can switch separately, which is a necessary requirement for TMR applications. If a NiMn antiferromagnet is deposited on top of this structure, the upper NiMnSb layer is exchange biased by the antiferromagnet, while the lower one is left unaffected. Furthermore the growth of NiMnSb on (111) oriented substrates has been investigated. For these experiments, InP substrates with a surface orientation of (111)A and (111)B were used, which were miscut by 1 to 2° from the exact orientation to allow for smoother surfaces during growth. Both the (In, Ga)As buffer as well as the NiMnSb layer show well defined surface reconstructions during growth. X-ray diffraction experiments prove the single crystalline structure of the samples. However, neither for the growth on (111)A nor on (111)B a perfectly smooth surface could be obtained during growth, which can be attributed to the formation of pyramid-like facets evolving as a result of the atomic configuration at the surface. A similar relaxation behavior as NiMnSb layers on (001) oriented InP could not be observed. RHEED and x-ray diffraction measurements show that above a thickness of about 10nm the NiMnSb layer begins to relax, but remnants of pseudomorphic parts could not be found. Magnetic measurements show that the misorientation of the substrate crystal has a strong influence on the magnetic anisotropies of NiMnSb(111) samples. In all cases a uniaxial anisotropy could be observed. The easy axis is always aligned parallel to the direction of the miscut of the substrate.}, subject = {Nickelverbindungen}, language = {en} } @phdthesis{Bach2004, author = {Bach, Lars}, title = {Neuartige nanostrukturierte Halbleiterlaser und Mikroringresonatoren auf InP-Basis f{\"u}r Wellenl{\"a}ngenmultiplexsysteme in der optischen Nachrichten{\"u}bertragung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9474}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Zusammenfassung Diese Arbeit besch{\"a}ftigt sich mit der Herstellung und Untersuchung von neuartigen nanostrukturierten Halbleiterbauelementen. Es wird gezeigt, dass durch den Einsatz von optischer und hochaufl{\"o}sender Elektronenstrahl- und Ionenstrahllithographie verschiedene optoelektronische Bauelemente (Laser und Filter) definiert werden k{\"o}nnen. Die Kombination dieser Definitionsprozesse mit speziellen nass- und trockenchemischen {\"A}tzverfahren erlaubt die Herstellung von Bauelementen mit sehr hoher Genauigkeit, Reproduzierbarkeit und monolithischer Integrationsf{\"a}higkeit mit verschiedensten Geometrien und Bereichen innerhalb der Bauelemente. Die Grundlagen zum Verst{\"a}ndnis der Funktionsweise und der Hochfrequenzeigenschaften der einzelnen Resonatorarten, Gitterstrukturen und der Laser mit diesen Gitterstrukturen sind in Kapitel 2 zusammen gefasst. Nach einer kurzen Abhandlung des Laserprinzips und des Aufbaus einer Laserdiode, werden die statischen und dynamischen Kenngr{\"o}ßen und Prozesse in den Lasern ausf{\"u}hrlich vorgestellt. Besonderes Augenmerk gilt dabei den dynamischen Grundlagen und der Erl{\"a}uterung eines zus{\"a}tzlichen Wechselwirkungsprinzips, genannt „Detuned Loading", im Laser und die sich daraus ergebenden neuen Eigenschaften. Die Auswirkungen der Resonatorgeometrien und Gitterstrukturen auf die spektralen Eigenschaften der Laser sind Bestandteil des zweiten Teiles von Kapitel 2. In Kapitel 3 werden die technologischen Prozesse zur Herstellung der verschiedensten pr{\"a}sentierten Bauelemente im Detail vorgestellt. Die Vorstellung der Charakterisierungsmethoden und der verwendeten Messpl{\"a}tze schließen dieses Kapitel ab. Kapitel 4 besch{\"a}ftigt sich ausschließlich mit den elektrischen und spektralen Eigenschaften der einzel- und gekoppelten Quadrat-Resonator-Lasern. Kapitel 5 besch{\"a}ftigt sich mit monomodige DFB- oder DBR-Lasern f{\"u}r Wellenl{\"a}ngenmultiplexsysteme im Wellenl{\"a}ngenbereich um 1.55 µm, als Einzelkomponenten oder in Arrays, die eine exakt einstellbarere Wellenl{\"a}nge und hoher Modenstabilit{\"a}t aufweisen. Durch die Verwendung des DBR-Prinzips kann eine signifikante Verbesserung der statischen und dynamischen Eigenschaften gegen{\"u}ber dem DFB-Prinzip erreicht werden. Die Verbesserungen der statischen Eigenschaften beruhen haupts{\"a}chlich auf der r{\"a}umlichen Trennung von Verst{\"a}rkungs- und Gitterbereich im Fall des DBR-Lasers und der damit verbundenen Erh{\"o}hung der Reflexion des R{\"u}ckfacettenbereiches. Die Trennung bewirkt eine Reduktion der Absorption im Verst{\"a}rkungsbereich, keine gitterimplantationsbedingten Erh{\"o}hung der internen Absorption wie im DFB-Fall, und damit eine Erh{\"o}hung der Effizienz was sich wiederum in einer geringern W{\"a}rmeproduktion {\"a}ußert. Aufgrund der aufgef{\"u}hrten Ursachen ist es m{\"o}glich durch Gr{\"o}ßenoptimierung der jeweiligen Bereiche Schwellenstr{\"o}me von 8 mA, Effizienzen von 0.375 W/A, Ausgangsleistungen bis zu 70 mW, Betriebsbereiche bis zum 12fachen des Schwellenstromes, Verschiebungen der Wellenl{\"a}nge mit dem Betriebsstrom von 0.01 nm/mA, eine thermische Belastbarkeiten bis zu 120°C und Seitenmodenunterdr{\"u}ckungen bis zu 67 dB durch das DBR-Laserprinzip zu realisieren. In Kapitel 6 wird ein neues Konzept eines hochfrequenzoptimierten Lasers vorgestellt. Das Prinzip des „Detuned Loading" ist sehr sensitiv auf die Phasenlage der umlaufenden Welle im Laser und auf die Lage der Hauptmode auf der Reflexionsfunktion des Gitters. Da eine Phasen{\"a}nderung von 2\&\#61552;\&\#61472;einer L{\"a}ngen{\"a}nderung von einigen 100 nm entspricht und dies außerhalb der Herstellungstoleranz liegt, ist eine gezielte Kontrolle dieses Prinzips im DBR-Laser nicht m{\"o}glich. Dies f{\"u}hrte zu einer Weiterentwicklung des DBR-Lasers in einem Laser der einer Phasenkontrolle erm{\"o}glicht, genannt CCIG-Laser. Dieser Laser besteht aus einer Lasersektion, einer zentralen Gittersektion und einer angeschlossenen Phasensektion. Durch Strominjektion in die Phasensektion ist es m{\"o}glich {\"u}ber eine {\"A}nderung des Brechungsindexes eine gezielte Einstellung der Phasenlage zu gew{\"a}hrleisten. Die Phasensektion hat keine Auswirkungen auf die statischen elektrischen und spektralen Eigenschaften der Laser. Diese sind sehr gut mit denen der DBR-Laser vergleichbar. Damit war es m{\"o}glich durch einen CCIG-Laser mit Sektionsgr{\"o}ßen von 500 µm f{\"u}r jede Sektion eine Steigerung der Bandbreite auf einen Rekordwert von 37 GHz, dass entspricht einem Steigerungsfaktor von 4.5 gegen{\"u}ber Fabry-Perot-Lasern gleicher L{\"a}nge, zu steigern.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Auth2020, author = {Auth, Michael Tilman}, title = {Quantitative Electron Paramagnetic Resonance Studies of Charge Transfer in Organic Semiconductors}, doi = {10.25972/OPUS-18951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189513}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In the present work we investigated various charge transfer processes, as they appear in the versatile world of organic semiconductors by probing the spin states of the corresponding charge carrier species via electron paramagnetic resonance (EPR) spectroscopy. All studied material systems are carbon-based compounds, either belonging to the group of polymers, fullerenes, or single-wall carbon nanotubes (SWNTs). In the first instance, we addressed the change of the open circuit voltage (Voc) with the fullerene blend stoichiometry in fullerene-based solar cells for organic photovoltaics (OPV). The voltage depends strongly on the energy separation between the lowest unoccupied molecular orbital (LUMO) of the donor and the highest occupied molecular orbital (HOMO) of the acceptor. By exploiting the Gaussian distribution of the charge carriers in a two-level system, and thus also their spins in the EPR experiment, it could be shown that the LUMOs get closer by a few to a few hundred meV when going from pure fullerene materials to a fullerene mixture. The reason for this strong energetic effect is likely the formation of a fullerene alloy. Further, we investigated the chemical doping mechanism of SWNTs with a (6,5)-chirality and their behaviour under optical excitation. In order to determine the unintentional (pre)-doping of SWNTs, EPR spectra of the raw material as well as after different purification steps were recorded. This facilitated the determination of nanotube defects and atmospheric p-doping as the causes of the measured EPR signals. In order to deliberately transfer additional charge carriers to the nanotubes, we added the redox-active substance AuCl3 where we determined an associated doping-yield of (1.5±0.2)\%. In addition, a statistical occupation model was developed which can be used to simulate the distribution of EPR active, i.e. unpaired and localised charge carriers on the nanotubes. Finally, we investigated the charge transfer behaviour of (6,5)-SWNTs together with the polymer P3HT and the fullerene PC60BM after optical excitation.}, subject = {Organische Halbleiter}, language = {en} } @phdthesis{Aulbach2018, author = {Aulbach, Julian}, title = {Gold-Induced Atomic Wires on Terraced Silicon Surfaces: Formation and Interactions of Silicon Spin Chains}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169347}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Atomic nanowires formed by self-assembled growth on semiconducting surfaces represent a feasible physical realization of quasi-1D electron systems and can be used to study fascinating 1D quantum phenomena. The system in the focus of this thesis, Si(553)-Au, is generated by Au adsorption onto a stepped silicon surface. It features two different chain types, interspersed with each other: A Au chain on the terrace, and a honeycomb chain of graphitic silicon located at the step edge. The silicon atoms at the exposed edges of the latter are predicted to be spin-polarized and charge-ordered [1], leading to an ordered array of local magnetic moments referred to as ``spin chains''. The present thesis puts this spin chain proposal to an experimental test. A detailed scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) scrutiny reveals a distinct unoccupied density of states (DOS) feature localized at every third Si step-edge atom, which aligns perfectly with the density functional theory (DFT) prediction. This finding provides strong evidence for the formation of spin chains at the Si(553)-Au step edges, and simultaneously rules out the interpretation of previous studies which attributed the x3 step-edge superstructure to a Peierls instability. To study the formation of spin chains in further detail, an additional member of the so-called Si(hhk)-Au family -- Si(775)-Au -- is analyzed. Based on DFT modeling (performed by S.C. Erwin, Naval Research Laboratory, USA) and detailed STM and STS experiments, a new structure model for this surface is developed, and the absence of spin chains at the Si(775)-Au step edges is demonstrated. The different step-edge charge distributions of all known Si(hhk)-Au surfaces are traced back to an electron transfer between the terrace and the step edge. Accordingly, an unintentional structure defect should create a localized spin at the Si(775)-Au step edge. This prediction is verified experimentally, and suggest that surface chemistry can be used to create and destroy Si spin chains. Having clarified why spin chains form on some Si(hhk)-Au surfaces but not on others, various interaction effects of the Si(553)-Au spin chains are inspected. A collaborative analysis by SPA-LEED (M. Horn-von Hoegen group, University of Duisburg-Essen, Germany), DFT (S.C. Erwin), and STM reveals strong lateral coupling between adjacent spin chains, bearing interesting implications for their magnetic ordering. The centered geometry uncovered leads to magnetic frustration, and may stabilize a 2D quantum spin liquid. Moreover, a complex interplay between neighboring Au and Si chains is detected. Specifically, the interaction is found effectively ``one-way'', i.e., the Si step edges respond to the Au chains but not vice versa. This unidirectional effect breaks the parity of the Si chains, and creates two different configurations of step edges with opposite directionality. In addition to the static properties of the Si(553)-Au surface mentioned above, the occurrence of solitons in both wire types is witnessed in real space by means of high-resolution STM imaging. The solitons are found to interact with one another such that both move in a coupled fashion along the chains. Likewise, STM experiments as a function of the tunneling current suggest an excitation of solitons along the step edge by the STM tunneling tip. Solitons are also found to play an essential role in the temperature-dependent behavior of the Si(553)-Au step edges. It is an accepted fact that the distinct x3 superstructure of the Si(553)-Au step edges vanishes upon heating to room temperature. As a first step in exploring this transition in detail over a large temperature range, a previously undetected, occupied electronic state associated with the localized step-edge spins is identified by means of angle-resolved photoemission spectroscopy (ARPES). A tracking of this state as a function of temperature reveals an order-disorder-type transition. Complementary STM experiments attribute the origin of this transition to local, thermally activated spin site hops, which correspond to soliton-anitsoliton pairs. Finally, a manipulation of the Si(553)-Au atomic wire array is achieved by the stepwise adsorption of potassium atoms. This does not only increase the filling of the Au-induced surface bands culminating in a metal-insulator transition (MIT), but also modifies the Si step-edge charge distribution, as indicated by STM and ARPES experiments. [1] S. C. Erwin and F. Himpsel, Intrinsic magnetism at silicon surfaces, Nat. Commun. 1, 58 (2010).}, subject = {Rastertunnelmikroskopie}, language = {en} } @phdthesis{Arnold2008, author = {Arnold, Johannes F. T.}, title = {Funktionelle Bildgebung der Lunge und des Bronchialkarzinoms mittels Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26388}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Ziel dieser Arbeit war es, die Magnetresonanztomographie (MRT) an der Lunge als Alternative zur traditionellen Lungenbildgebung voranzutreiben. So sollten MRT-Verfahren zur regionalen und quantitativen Lungenfunktionspr{\"u}fung f{\"u}r die klinische Routine entwickelt werden. Im Hinblick auf die Strahlentherapie von Patienten mit Bronchialkarzinom sollen funktionelle Lungenareale erkannt werden, um diese w{\"a}hrend der Bestrahlung optimal schonen zu k{\"o}nnen. An den zahlreichen Luft-Gewebe-Grenzfl{\"a}chen in der Lunge entstehen Magnetfeldinhomogenit{\"a}ten. Daraus resultiert ein schneller Zerfall des MRT-Signals in der Lunge. Es wurde in dieser Arbeit ein Ansatz aufgezeigt, um die Ursache f{\"u}r den raschen Signalzerfall, n{\"a}mlich die unterschiedlichen magnetischen Suszeptibilit{\"a}ten von Luftr{\"a}umen und Lungengewebe, zu beseitigen. Durch die intravaskul{\"a}re Injektion von paramagnetischen Kontrastmitteln kann die Suszeptibilit{\"a}t des Blutes an die Suszeptibilit{\"a}t der Luftr{\"a}ume angeglichen werden. Durch die Entwicklung einer MR-kompatiblen aktiven Atemkontrolle (MR-ABC) wurde in dieser Arbeit ein weiteres fundamentales Problem der Lungen-MRT adressiert: Die Bewegung w{\"a}hrend der Datenakquisition. Die MR-ABC detektiert Herzschlag und Atemposition und ist in der Lage die Atembewegung in jeder beliebigen Atemphase reproduzierbar f{\"u}r eine definierte Zeit auszusetzen. Dies wird durch einen Verschluss der Atemluftzufuhr realisiert. Traditionelle Verfahren k{\"o}nnen zwar ebenfalls die Atemphase detektieren, gestatten jedoch nicht deren Konservierung. Es wurde demonstriert, dass mit der MR-ABC hochaufl{\"o}sende Bilder der Lunge in hoher Bildqualit{\"a}t und durch die Verwendung langer Akquisitionsfenster in relativ kurzer Messzeit erreicht werden k{\"o}nnen. Eine regionale Lungenfunktionspr{\"u}fung ist f{\"u}r die Diagnose und Evaluierung vieler Krankheitsbilder vorteilhaft. In diesem Sinne wird seit einigen Jahren das Potential der Sauerstoff-verst{\"a}rkten Lungen-MRT erforscht, die auf den paramagnetischen Eigenschaften des molekularen Sauerstoffs basiert. Im Blut gel{\"o}ster Sauerstoff f{\"u}hrt zu einer Verk{\"u}rzung der T1-Relaxationszeit. Statt diese T1-Verk{\"u}rzung quantitativ zu bestimmen wird aus praktischen Gr{\"u}nden meist ein T1-gewichteter Ansatz gew{\"a}hlt. In dieser Arbeit wurde jedoch gezeigt, dass nicht-quantitative Verfahren ein erhebliches Risiko zur Falschinterpretation beinhalten. Um Fehldiagnosen zu vermeiden, sollten deshalb prinzipiell quantitative Methoden zur Messung der durch die Sauerstoff-Verst{\"a}rkung bedingten T1-Verk{\"u}rzung in der Lunge verwendet werden. Herk{\"o}mmliche Techniken zur quantitativen T1-Messung ben{\"o}tigen allerdings l{\"a}ngere Messzeiten. Deshalb war zur Vermeidung von Bewegungsartefakten bisher die Datenaufnahme im Atemanhaltezustand notwendig. Wiederholtes Atemanhalten von mehreren Sekunden Dauer ist allerdings f{\"u}r einige Patienten sehr belastend. Aus diesem Grund wurden in dieser Arbeit zwei Methoden entwickelt, die eine quantitative Lungenfunktionspr{\"u}fung mittels MRT bei freier Atmung der Patienten erm{\"o}glichen. Eine gute Sauerstoffversorgung des Tumors wirkt sich positiv auf den Erfolg der Bestrahlung aus. Ein Ansatz zur Verbesserung der Strahlentherapie des Bronchialkarzinoms k{\"o}nnte daher in der Beatmung der Patienten mit hyperoxischen hypercapnischen Atemgasen w{\"a}hrend der Bestrahlung bestehen. In diesem Zusammenhang k{\"o}nnte die quantitative Messung der T1-Ver{\"a}nderung im Tumor nach Carbogenatmung ein Selektionskriterium darstellen, um diejenigen Patienten zu identifizieren, die von einer Carbogenbeatmung w{\"a}hrend der Bestrahlung profitieren k{\"o}nnen. Die Differenzierung zwischen vitalem Tumorgewebe, Nekrosen und atelektatischem Lungengewebe ist von großer Bedeutung bei der Bestrahlungsplanung des Bronchialkarzinoms. Einen neuen Ansatz bildet die in dieser Arbeit vorgestellte Magnetiserungstransfer-MRT. Um einen Magnetisierungstransfer zu erzeugen, wurde ein speziell auf die Bildgebung an der Lunge optimiertes Pr{\"a}parationsmodul entworfen. In Verbindung mit einer schnellen Bildakquisitionstechnik konnte die Magnetisierungstransfer-Lungenbildgebung in einem kurzen Atemstopp durchgef{\"u}hrt werden. Diese Technik wurde an mehreren Patienten mit Bronchialkarzinom evaluiert und die Ergebnisse mit denen der Fluor-Deoxyglykose-Positronen-Emissions-Tomographie (FDG-PET) verglichen. Es wurde festgestellt, dass mit diesem MRT-Verfahren {\"a}hnliche diagnostische Erkenntnisse erzielt werden k{\"o}nnen. Allerdings besitzt die MRT Vorteile im Hinblick auf r{\"a}umliche Aufl{\"o}sung, Messzeit, Bildqualit{\"a}t, Kosten und Strahlenbelastung. Das erhebliche Potential f{\"u}r die Bestrahlungsplanung des Bronchialkarzinoms durch eine Magnetisierungstransfer-Bildgebung wurde damit nachgewiesen.}, subject = {Magnetische Resonanz}, language = {de} } @phdthesis{Armer2023, author = {Armer, Melina Brigitte Melanie}, title = {High-Quality Lead-Free Double Perovskite Single Crystals and their Optical Properties}, doi = {10.25972/OPUS-32750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The presented thesis deals with the investigation of the characteristic physical properties of lead-free double perovskites. For this purpose lead-free double perovskite single crystals were grown from solution. In order to assess the influence of growth temperature on tail states in the material, the crystals were studied using Photoluminescence Excitation (PLE) and Transmission measurements. Additionally, lead-free double perovskite solar cells and thin films were investigated to address the correlation of precursor stoichiometry and solar cell efficiency. In a last step a new earth abundant lead-free double perovskite was introduced and its physical properties were studied by photoluminescene and absorptance. Like this it was possible to assess the suitability of this material for solar cell applications in the future.}, subject = {Perowskit}, language = {en} } @phdthesis{Anneser2020, author = {Anneser, Katrin}, title = {Elektrochemische Doppelschichtkondensatoren zur Stabilisierung fluktuierender photovoltaischer Leistung}, doi = {10.25972/OPUS-19933}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199339}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Der Ausbau der regenerativen Energiequellen f{\"u}hrt vermehrt zu unvorhersehbaren Schwankungen der erzeugten Leistung, da Windkraft und Photovoltaik von nat{\"u}rlichen Bedingungen abh{\"a}ngen. Gerade Kurzzeitfluktuationen im Sekunden- bis Minutenbereich, die bei Solarzellen durch die Verschattung von vor{\"u}berziehenden Wolken zustande kommen, wird bislang wenig Beachtung geschenkt. Kurzzeitspeicher m{\"u}ssen eine hohe Zyklenstabilit{\"a}t aufweisen, um zur Gl{\"a}ttung dieser Leistungsfluktuationen in Frage zu kommen. Im Rahmen der vorliegenden Dissertation wurden elektrochemische Doppelschichtkondensatoren f{\"u}r die Kopplung mit Siliziumsolarzellen und organischen Solarmodulen mit Hilfe von Simulationen und Messungen untersucht. Zus{\"a}tzlich wurden grundlegende Fragestellungen zur Prozessierung und Alterung von Doppelschichtkondensatoren im Hinblick auf ein in der Literatur bereits diskutiertes System betrachtet, das beide Komponenten in einem Bauteil integriert - den sogenannten photocapacitor. Um die Druckbarkeit des gesamten elektrochemischen Doppelschichtkondensators zu erm{\"o}glichen, wurde der konventionell verwendete Fl{\"u}ssigelektrolyt durch einen Polymer-Gel-Elektrolyten auf Basis von Polyvinylalkohol und einer S{\"a}ure ersetzt. Durch eine Verbesserung der Prozessierung konnte ein gr{\"o}ßerer Anteil der spezifischen Fl{\"a}che der por{\"o}sen Kohlenstoffelektroden vom Elektrolyten benetzt und somit zur Speicherung genutzt werden. Die Untersuchungen zeigen, dass mit Polymer-Gel-Elektrolyten {\"a}hnliche Kapazit{\"a}ten erreicht werden wie mit Fl{\"u}ssigelektrolyten. Im Hinblick auf die Anwendung im gekoppelten System muss der elektrochemische Doppelschichtkondensator den gleichen Umweltbedingungen hinsichtlich Temperatur und Luftfeuchte standhalten wie die Solarzelle. Hierzu wurden umfangreiche Alterungstests durchgef{\"u}hrt und festgestellt, dass die Kapazit{\"a}t zwar bei Austrocknung des wasserhaltigen Polymer-Gel-Elektrolyten sinkt, bei einer Wiederbefeuchtung aber auch eine Regeneration des Speichers erfolgt. Zur passenden Auslegung des elektrochemischen Doppelschichtkondensators wurde eine detaillierte Analyse der Leistungsfluktuationen durchgef{\"u}hrt, die mit einem eigens entwickelten MPP-Messger{\"a}t an organischen Solarmodulen gemessen wurden. Anhand der Daten wurde analysiert, welche Energiemengen f{\"u}r welche Zeit im Kurzzeitspeicher zwischengespeichert werden m{\"u}ssen, um eine effiziente Gl{\"a}ttung der ins Netz einzuspeisenden Leistung zu erreichen. Aus der Statistik der Fluktuationen wurde eine Kapazit{\"a}t berechnet, die als Richtwert in die Simulationen einging und dann mit anderen Kapazit{\"a}ten verglichen wurde. Neben einem idealen MPP-Tracking f{\"u}r verschiedene Arten von Solarzellen und Beleuchtungsprofilen konnte die Simulation auch die Kopplung aus Solarzelle und elektrochemischem Doppelschichtkondensator mit zwei verschiedenen Betriebsstrategien nachbilden. Zum einen wurde ein fester Lastwiderstand genutzt, zum anderen eine Zielspannung f{\"u}r den Kurzzeitspeicher und somit auch die Solarzelle vorgegeben und der Lastwiderstand variabel so angepasst, dass die Zielspannung gehalten wird. Beide Betriebsmethoden haben einen Energieverlust gegen{\"u}ber der MPP-getrackten Solarzelle zu verzeichnen, f{\"u}hren aber zu einer Gl{\"a}ttung der Leistung des gekoppelten Systems. Die Simulation konnte f{\"u}r Siliziumsolarzellen mit einem Demonstratorversuch im Labor und f{\"u}r organische Solarzellen unter realen Bedingungen validiert werden. Insgesamt ergibt sich eine vielversprechende Gl{\"a}ttung der Leistungsfluktuationen von Solarzellen durch den Einsatz von elektrochemischen Doppelschichtkondensatoren.}, subject = {Energie}, language = {de} } @phdthesis{Andelovic2024, author = {Andelovic, Kristina}, title = {Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models}, doi = {10.25972/OPUS-30360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly - at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe-/- mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models - two parameters highly influencing plaque development and progression - there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research.}, subject = {H{\"a}modynamik}, language = {en} } @phdthesis{Ames2015, author = {Ames, Christopher}, title = {Molecular Beam Epitaxy of 2D and 3D HgTe, a Topological Insulator}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In the present thesis the MBE growth and sample characterization of HgTe structures is investigated and discussed. Due to the first experimental discovery of the quantum Spin Hall effect (QSHE) in HgTe quantum wells, this material system attains a huge interest in the spintronics society. Because of the long history of growing Hg-based heterostructures here at the Experimentelle Physik III in W{\"u}rzburg, there are very good requirements to analyze this material system more precisely and in new directions. Since in former days only doped HgTe quantum wells were grown, this thesis deals with the MBE growth in the (001) direction of undoped HgTe quantum wells, surface located quantum wells and three dimensional bulk layers. All Hg-based layers were grown on CdTe substrates which generate strain in the layer stack and provide therefore new physical effects. In the same time, the (001) CdTe growth was investigated on n-doped (001) GaAs:Si because the Japanese supplier of CdTe substrates had a supply bottleneck due to the Tohoku earthquake and its aftermath in 2011. After a short introduction of the material system, the experimental techniques were demonstrated and explained explicitly. After that, the experimental part of this thesis is displayed. So, the investigation of the (001) CdTe growth on (001) GaAs:Si is discussed in chapter 4. Firstly, the surface preparation of GaAs:Si by oxide desorption is explored and analyzed. Here, rapid thermal desorption of the GaAs oxide with following cool down in Zn atmosphere provides the best results for the CdTe due to small holes at the surface, while e.g. an atomic flat GaAs buffer deteriorates the CdTe growth quality. The following ZnTe layer supplies the (001) growth direction of the CdTe and exhibits best end results of the CdTe for 30 seconds growth time at a flux ratio of Zn/Te ~ 1/1.2. Without this ZnTe layer, CdTe will grow in the (111) direction. However, the main investigation is here the optimization of the MBE growth of CdTe. The substrate temperature, Cd/Te flux ratio and the growth time has to be adjusted systematically. Therefore, a complex growth process is developed and established. This optimized CdTe growth process results in a RMS roughness of around 2.5 nm and a FWHM value of the HRXRD w-scan of 150 arcsec. Compared to the literature, there is no lower FWHM value traceable for this growth direction. Furthermore, etch pit density measurements show that the surface crystallinity is matchable with the commercial CdTe substrates (around 1x10^4 cm^(-2)). However, this whole process is not completely perfect and offers still room for improvements. The growth of undoped HgTe quantum wells was also a new direction in research in contrast to the previous n-doped grown HgTe quantum wells. Here in chapter 5, the goal of very low carrier densities was achieved and therefore it is now possible to do transport experiments in the n - and p - region by tuning the gate voltage. To achieve this high sample quality, very precise growth of symmetric HgTe QWs and their HRXRD characterization is examined. Here, the quantum well thickness can now determined accurate to under 0.3 nm. Furthermore, the transport analysis of different quantum well thicknesses shows that the carrier density and mobility increase with rising HgTe layer thickness. However, it is found out that the band gap of the HgTe QW closes indirectly at a thickness of 11.6 nm. This is caused by the tensile strained growth on CdTe substrates. Moreover, surface quantum wells are studied. These quantum wells exhibit no or a very thin HgCdTe cap. Though, oxidization and contamination of the surface reduces here the carrier mobility immensely and a HgCdTe layer of around 5 nm provides the pleasing results for transport experiments with superconductors connected to the topological insulator [119]. A completely new achievement is the realization of MBE growth of HgTe quantum wells on CdTe/GaAs:Si substrates. This is attended by the optimization of the CdTe growth on GaAs:Si. It exposes that HgTe quantum wells grown in-situ on optimized CdTe/GaAs:Si show very nice transport data with clear Hall plateaus, SdH oscillations, low carrier densities and carrier mobilities up to 500 000 cm^2/Vs. Furthermore, a new oxide etching process is developed and analyzed which should serve as an alternative to the standard HCl process which generates volcano defects at some time. However, during the testing time the result does not differ in Nomarski, HRXRD, AFM and transport measurements. Here, long-time tests or etching and mounting in nitrogen atmosphere may provide new elaborate results. The main focus of this thesis is on the MBE growth and standard characterization of HgTe bulk layers and is discussed in chapter 6. Due to the tensile strained growth on lattice mismatched CdTe, HgTe bulk opens up a band gap of around 22 meV at the G-point and exhibits therefore its topological surface states. The analysis of surface condition, roughness, crystalline quality, carrier density and mobility via Nomarski, AFM, XPS, HRXRD and transport measurements is therefore included in this work. Layer thickness dependence of carrier density and mobility is identified for bulk layer grown directly on CdTe substrates. So, there is no clear correlation visible between HgTe layer thickness and carrier density or mobility. So, the carrier density is almost constant around 1x10^11 cm^(-2) at 0 V gate voltage. The carrier mobility of these bulk samples however scatters between 5 000 and 60 000 cm^2/Vs almost randomly. Further experiments should be made for a clearer understanding and therefore the avoidance of unusable bad samples.But, other topological insulator materials show much higher carrier densities and lower mobility values. For example, Bi2Se3 exhibits just density values around 1019 cm^(-2) and mobility values clearly below 5000 cm2/Vs. The carrier density however depends much on lithography and surface treatment after growth. Furthermore, the relaxation behavior and critical thickness of HgTe grown on CdTe is determined and is in very good agreement with theoretical prediction (d_c = 155 nm). The embedding of the HgTe bulk layer between HgCdTe layers created a further huge improvement. Similar to the quantum well structures the carrier mobility increases immensely while the carrier density levels at around 1x10^11 cm^(-2) at 0 V gate voltage as well. Additionally, the relaxation behavior and critical thickness of these barrier layers has to be determined. HgCdTe grown on commercial CdTe shows a behavior as predicted except the critical thickness which is slightly higher than expected (d_c = 850 nm). Otherwise, the relaxation of HgCdTe grown on CdTe/GaAs:Si occurs in two parts. The layer is fully strained up to 250 nm. Between 250 nm and 725 nm the HgCdTe film starts to relax randomly up to 10 \%. The relaxation behavior for thicknesses larger than 725 nm occurs than linearly to the inverse layer thickness. A explanation is given due to rough interface conditions and crystalline defects of the CdTe/GaAs:Si compared to the commercial CdTe substrate. HRXRD and AFM data support this statement. Another point is that the HgCdTe barriers protect the active HgTe layer and because of the high carrier mobilities the Hall measurements provide new transport data which have to be interpreted more in detail in the future. In addition, HgTe bulk samples show very interesting transport data by gating the sample from the top and the back. It is now possible to manipulate the carrier densities of the top and bottom surface states almost separately. The back gate consisting of the n-doped GaAs substrate and the thick insulating CdTe buffer can tune the carrier density for Delta(n) ~ 3x10^11 cm^(-2). This is sufficient to tune the Fermi energy from the p-type into the n-type region [138]. In this thesis it is shown that strained HgTe bulk layers exhibit superior transport data by embedding between HgCdTe barrier layers. The n-doped GaAs can here serve as a back gate. Furthermore, MBE growth of high crystalline, undoped HgTe quantum wells shows also new and extended transport output. Finally, it is notable that due to the investigated CdTe growth on GaAs the Hg-based heterostructure MBE growth is partially independent from commercial suppliers.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Albert2012, author = {Albert, Ferdinand}, title = {Vertikale und laterale Emissionseigenschaften von Halbleiter-Quantenpunkt-Mikroresonatoren im Regime der schwachen und starken Licht-Materie-Wechselwirkung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93016}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonatoren und deren vertikalen und lateralen Emissionseigenschaften. Quantenpunkte sind nanoskopische Strukturen, in denen die Beweglichkeit der Ladungstr{\"a}ger unterhalb der de-Broglie-Wellenl{\"a}nge eingeschr{\"a}nkt ist, wodurch die elektronische Zustandsdichte diskrete Werte annimmt. Sie werden daher auch als k{\"u}nstliche Atome bezeichnet. Um die Emissionseigenschaften der Quantenpunkte zu modifizieren, werden sie im Rahmen dieser Arbeit als aktive Schicht in Mikros{\"a}ulenresonatoren eingebracht. Diese bestehen aus einer GaAs lambda-Kavit{\"a}t, die zwischen zwei Braggspiegeln aus alternierenden GaAs und AlAs Schichten eingefasst ist. Diese Resonatoren bieten sowohl eine vertikale Emission {\"u}ber Fabry-Perot Moden, als auch eine laterale Emission {\"u}ber Fl� ustergaleriemoden. Die Licht-Materie-Wechselwirkung zwischen den Resonatormoden und lokalisierten Ladungstr{\"a}gern in den Quantenpunkten, genannt Exzitonen, kann in zwei Regime unterteilt werden. Im Regime der starken Kopplung wird der spontane Emissionsprozess in einem Quantenpunkt reversibel und das emittierte Photon kann wieder durch den Quantenpunkt absorbiert werden. Die theoretische Beschreibung der Kopplung eines Exzitons an die Resonatormode erfolgt {\"u}ber das Jaynes-Cummings Modell und kann im Tavis-Cummings Modell auf mehrere Emitter erweitert werden. Ist die D{\"a}mpfung des Systems zu gross, so befindet man sich im Regime der schwachen Kopplung, in dem die Emissionsrate des Quantenpunkts durch den Purcell-Effekt erh{\"o}ht werden kann. In diesem Regime k{\"o}nnen Mikrolaser mit hohen Einkopplungsraten der spontanen Emission in die Resonatormode und niedrigen Schwellpumpstr{\"o}men realisiert werden. Zur Charakterisierung der Proben werden vor allem die Methoden der Mikro-Elektrolumineszenz und der Photonenkorrelationsmessungen eingesetzt.}, subject = {Drei-F{\"u}nf-Halbleiter}, language = {de} }