@article{BloemerPachelHofmannetal.2013, author = {Bl{\"o}mer, Nadja and Pachel, Christina and Hofmann, Urlich and Nordbeck, Peter and Bauer, Wolfgang and Mathes, Denise and Frey, Anna and Bayer, Barbara and Vogel, Benjamin and Ertl, Georg}, title = {5-Lipoxygenase facilitates healing after myocardial infarction}, series = {Basic Research in Cardiology}, volume = {108}, journal = {Basic Research in Cardiology}, number = {4}, doi = {10.1007/s00395-013-0367-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132602}, year = {2013}, abstract = {Early healing after myocardial infarction (MI) is characterized by a strong inflammatory reaction. Most leukotrienes are pro-inflammatory and are therefore potential mediators of healing and remodeling after myocardial ischemia. The enzyme 5-lipoxygenase (5-LOX) has a key role in the transformation of arachidonic acid in leukotrienes. Thus, we tested the effect of 5-LOX on healing after MI. After chronic coronary artery ligation, early mortality was significantly increased in 5-LOX\(^{-/-}\) when compared to matching wildtype (WT) mice due to left ventricular rupture. This effect could be reproduced in mice treated with the 5-LOX inhibitor Zileuton. A perfusion mismatch due to the vasoactive potential of leukotrienes is not responsible for left ventricular rupture since local blood flow assessed by magnetic resonance perfusion measurements was not different. However, after MI, there was an accentuation of the inflammatory reaction with an increase of pro-inflammatory macrophages. Yet, mortality was not changed in chimeric mice (WT vs. 5-LOX\(^{-/-}\) bone marrow in 5-LOX\(^{-/-}\) animals), indicating that an altered function of 5-LOX\(^{-/-}\) inflammatory cells is not responsible for the phenotype. Collagen production and accumulation of fibroblasts were significantly reduced in 5-LOX\(^{-/-}\) mice in vivo after MI. This might be due to an impaired migration of 5-LOX\(^{-/-}\) fibroblasts, as shown in vitro to serum. In conclusion, a lack or inhibition of 5-LOX increases mortality after MI because of healing defects. This is not mediated by a change in local blood flow, but through an altered inflammation and/or fibroblast function.}, language = {en} } @article{PachelMathesBayeretal.2013, author = {Pachel, Christina and Mathes, Denise and Bayer, Barbara and Dienesch, Charlotte and Wangorsch, Gaby and Heitzmann, Wolfram and Lang, Isabell and Ardehali, Hossein and Ertl, Georg and Dandekar, Thomas and Wajant, Harald and Frantz, Stefan}, title = {Exogenous Administration of a Recombinant Variant of TWEAK Impairs Healing after Myocardial Infarction by Aggravation of Inflammation}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0078938}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129889}, pages = {e78938}, year = {2013}, abstract = {Background: Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factorinducible 14 (Fn14) are upregulated after myocardial infarction (MI) in both humans and mice. They modulate inflammation and the extracellular matrix, and could therefore be important for healing and remodeling after MI. However, the function of TWEAK after MI remains poorly defined. Methods and results: Following ligation of the left coronary artery, mice were injected twice per week with a recombinant human serum albumin conjugated variant of TWEAK (HSA-Flag-TWEAK), mimicking the activity of soluble TWEAK. Treatment with HSA-Flag-TWEAK resulted in significantly increased mortality in comparison to the placebo group due to myocardial rupture. Infarct size, extracellular matrix remodeling, and apoptosis rates were not different after MI. However, HSA-Flag-TWEAK treatment increased infiltration of proinflammatory cells into the myocardium. Accordingly, depletion of neutrophils prevented cardiac ruptures without modulating all-cause mortality. Conclusion: Treatment of mice with HSA-Flag-TWEAK induces myocardial healing defects after experimental MI. This is mediated by an exaggerated neutrophil infiltration into the myocardium.}, language = {en} } @article{LiuHuNiemannetal.2013, author = {Liu, Dan and Hu, Kai and Niemann, Markus and Herrmann, Sebastian and Cikes, Maja and St{\"o}rk, Stefan and Beer, Meinrad and Gaudron, Philipp Daniel and Morbach, Caroline and Knop, Stefan and Geissinger, Eva and Ertl, Georg and Bijnens, Bart and Weidemann, Frank}, title = {Impact of Regional Left Ventricular Function on Outcome for Patients with AL Amyloidosis}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0056923}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130293}, pages = {e56923}, year = {2013}, abstract = {Objectives The aim of this study was to explore the left ventricular (LV) deformation changes and the potential impact of deformation on outcome in patients with proven light-chain (AL) amyloidosis and LV hypertrophy. Background Cardiac involvement in AL amyloidosis patients is associated with poor outcome. Detecting regional cardiac function by advanced non-invasive techniques might be favorable for predicting outcome. Methods LV longitudinal, circumferential and radial peak systolic strains (Ssys) were assessed by speckle tracking imaging (STI) in 44 biopsy-proven systemic AL amyloidosis patients with LV hypertrophy (CA) and in 30 normal controls. Patients were divided into compensated (n = 18) and decompensated (n = 26) group based on clinical assessment and followed-up for a median period of 345 days. Results Ejection fraction (EF) was preserved while longitudinal Ssys (LSsys) was significantly reduced in both compensated and decompensated groups. Survival was significantly reduced in decompensated group (35\% vs. compensated 78\%, P = 0.001). LSsys were similar in apical segments and significantly reduced in basal segments between two patient groups. LSsys at mid-segments were significantly reduced in all LV walls of decompensated group. Patients were further divided into 4 subgroups according to the presence or absence of reduced LSsys in no (normal), only basal (mild), basal and mid (intermediate) and all segments of the septum (severe). This staging revealed continuously worse prognosis in proportion to increasing number of segments with reduced LSsys (mortality: normal 14\%, mild 27\%, intermediate 67\%, and severe 64\%). Mid-septum LSsys<11\% suggested a 4.8-fold mortality risk than mid-septum LSsys≥11\%. Multivariate regression analysis showed NYHA class and mid-septum LSsys were independent predictors for survival. Conclusions Reduced deformation at mid-septum is associated with worse prognosis in systemic amyloidosis patients with LV hypertrophy.}, language = {en} } @article{NordbeckBoenhofHilleretal.2013, author = {Nordbeck, Peter and B{\"o}nhof, Leoni and Hiller, Karl-Heinz and Voll, Sabine and Arias-Loza, Paula and Seidlmaier, Lea and Williams, Tatjana and Ye, Yu-Xiang and Gensler, Daniel and Pelzer, Theo and Ertl, Georg and Jakob, Peter M. and Bauer, Wolfgang R. and Ritter, Oliver}, title = {Impact of Thoracic Surgery on Cardiac Morphology and Function in Small Animal Models of Heart Disease: A Cardiac MRI Study in Rats}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0068275}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130064}, pages = {e68275}, year = {2013}, abstract = {Background Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies. Methods Female Wistar rats (n = 6 per group) were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition. Results Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05) and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05) after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw), such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05), or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05). Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass), but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease. Conclusion Cardio-thoracic surgical procedures in experimental myocardial infarction cause distinct alterations upon the global integrity of the organism, which in the long term also induce circumscribed repercussions on cardiac morphology and function. This impact has to be considered when analyzing data from respective animal studies and transferring these findings to conditions in patients.}, language = {en} }