@article{GerullBrodehl2020, author = {Gerull, Brenda and Brodehl, Andreas}, title = {Genetic Animal Models for Arrhythmogenic Cardiomyopathy}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, number = {264}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00624}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206903}, year = {2020}, abstract = {Arrhythmogenic cardiomyopathy has been clinically defined since the 1980s and causes right or biventricular cardiomyopathy associated with ventricular arrhythmia. Although it is a rare cardiac disease, it is responsible for a significant proportion of sudden cardiac deaths, especially in athletes. The majority of patients with arrhythmogenic cardiomyopathy carry one or more genetic variants in desmosomal genes. In the 1990s, several knockout mouse models of genes encoding for desmosomal proteins involved in cell-cell adhesion revealed for the first time embryonic lethality due to cardiac defects. Influenced by these initial discoveries in mice, arrhythmogenic cardiomyopathy received an increasing interest in human cardiovascular genetics, leading to the discovery of mutations initially in desmosomal genes and later on in more than 25 different genes. Of note, even in the clinic, routine genetic diagnostics are important for risk prediction of patients and their relatives with arrhythmogenic cardiomyopathy. Based on improvements in genetic animal engineering, different transgenic, knock-in, or cardiac-specific knockout animal models for desmosomal and nondesmosomal proteins have been generated, leading to important discoveries in this field. Here, we present an overview about the existing animal models of arrhythmogenic cardiomyopathy with a focus on the underlying pathomechanism and its importance for understanding of this disease. Prospectively, novel mechanistic insights gained from the whole animal, organ, tissue, cellular, and molecular levels will lead to the development of efficient personalized therapies for treatment of arrhythmogenic cardiomyopathy.}, language = {en} } @phdthesis{Blocka2019, author = {Blocka, Joanna}, title = {Molecular mechanisms underlying Woodhouse-Sakati syndrome: characterization of DCAF17 with specific, polyclonal antibodies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Woodhouse-Sakati syndrome (WSS) is a rare multisystemic, autosomal recessive disease. The underlying cause of WSS are mutations of C2orf37 gene, which result in a truncated protein. Little is known about the function of C2orf37 (DDB1-CUL4A-associated factor 17, DCAF17) apart from it being part of the DDB1-CUL4-ROC1 E3 ubiquitin ligase complex, specifically binding directly to DDB1 and serving as a substrate recruiter for E3. There are two major isoforms of DCAF17: beta (65 kDa, 520 amino acids) and alpha (27 kDa, 240 amino acids), which is a C-terminal part of beta. The intracellular localization of the WSS protein is thought to be primarily the nucleolus. A murine ortholog protein was found to be expressed in all tissues with a relatively higher expression in the brain, liver, and skin.The aim of this work was to investigate DCAF17 in HeLa cells in more detail, in particular the redistribution of both WSS isoforms on the subcellular and -nuclear level as well as their chemical features. For these experiments, I developed, through recombinant expression and affinity purification, a specific polyclonal antibody against a WSS-epitope 493-520. Furthermore, three other specific polyclonal antibodies were obtained through affinity purification with help of commercially produced high-affinity epitope peptides.By means of these antibodies, I determined- through immunofluorescence and subcellular protein fractionation- that, apart from the redistribution of the WSS protein within the non-soluble = chromatin-bound nuclear fraction, a significant amount of both WSS isoforms is present in the soluble nuclear fraction. Indeed, treatment of purified nuclear envelopes with an increasing concentration of NaCl as well as urea confirmed a non-covalent binding of the WSS protein to the nuclear envelope with the detachment ofbeta-WSS at a lower NaCl concentration than alpha-WSS. In regard to the chromatin-bound WSS protein, I performed hydrolysis of nuclear and nucleolar extract with DNase and RNase. The results indicate that the WSS protein is bound to DNA but not RNA, with alpha-WSS being possibly located more abundantly in the nucleolus, whereas beta-WSS within other subnuclear departments. Furthermore, in all the above-mentioned experiments, a presence of an 80-kDa protein, which specifically reacted with the polyclonal high-affinity antibodies and showed similar redistribution and chemical features as alpha- and beta-WSS, was observed. In order to investigate whether this protein is a posttranslationally modified WSS isoform, I performed deglycosylation and dephosphorylation of nuclear extract, which showed no disappearance or change in abundance of the 80-kDa band on Western blot. While other ways of poststranslational modification cannot be excluded as the cause of occurrence of the 80-kDa protein, an existence of a third, yet undescribed, major isoform is also conceivable. Summarizing, this work contributed to a deeper characterization of the WSS protein, which can help future investigators in developing new experimental ideas to better understand the pathology of WSS.}, subject = {Humangenetik}, language = {en} } @article{JanzWalzCirnuetal.2024, author = {Janz, Anna and Walz, Katharina and Cirnu, Alexandra and Surjanto, Jessica and Urlaub, Daniela and Leskien, Miriam and Kohlhaas, Michael and Nickel, Alexander and Brand, Theresa and Nose, Naoko and W{\"o}rsd{\"o}rfer, Philipp and Wagner, Nicole and Higuchi, Takahiro and Maack, Christoph and Dudek, Jan and Lorenz, Kristina and Klopocki, Eva and Erg{\"u}n, S{\"u}leyman and Duff, Henry J. and Gerull, Brenda}, title = {Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes}, series = {Molecular Metabolism}, volume = {79}, journal = {Molecular Metabolism}, issn = {2212-8778}, doi = {10.1016/j.molmet.2023.101859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350393}, year = {2024}, abstract = {Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.}, language = {en} } @article{DoerhoeferLammertKraneetal.2013, author = {D{\"o}rh{\"o}fer, Lena and Lammert, Alexander and Krane, Vera and Gorski, Mathias and Banas, Bernhard and Wanner, Christoph and Kr{\"a}mer, Bernhard K. and Heid, Iris M. and B{\"o}ger, Carsten A.}, title = {Study design of DIACORE (DIAbetes COhoRtE) - a cohort study of patients with diabetes mellitus type 2}, series = {BMC Medical Genetics}, volume = {14}, journal = {BMC Medical Genetics}, number = {25}, issn = {1471-2350}, doi = {10.1186/1471-2350-14-25}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122040}, year = {2013}, abstract = {Background: Diabetes mellitus type 2 (DM2) is highly associated with increased risk for chronic kidney disease (CKD), end stage renal disease (ESRD) and cardiovascular morbidity. Epidemiological and genetic studies generate hypotheses for innovative strategies in DM2 management by unravelling novel mechanisms of diabetes complications, which is essential for future intervention trials. We have thus initiated the DIAbetes COhoRtE study (DIACORE). Methods: DIACORE is a prospective cohort study aiming to recruit 6000 patients of self-reported Caucasian ethnicity with prevalent DM2 for at least 10 years of follow-up. Study visits are performed in University-based recruiting clinics in Germany using standard operating procedures. All prevalent DM2 patients in outpatient clinics surrounding the recruiting centers are invited to participate. At baseline and at each 2-year follow-up examination, patients are subjected to a core phenotyping protocol. This includes a standardized online questionnaire and physical examination to determine incident micro-and macrovascular DM2 complications, malignancy and hospitalization, with a primary focus on renal events. Confirmatory outcome information is requested from patient records. Blood samples are obtained for a centrally analyzed standard laboratory panel and for biobanking of aliquots of serum, plasma, urine, mRNA and DNA for future scientific use. A subset of the cohort is subjected to extended phenotyping, e. g. sleep apnea screening, skin autofluorescence measurement, non-mydriatic retinal photography and non-invasive determination of arterial stiffness. Discussion: DIACORE will enable the prospective evaluation of factors involved in DM2 complication pathogenesis using high-throughput technologies in biosamples and genetic epidemiological studies.}, language = {en} }