@article{KlughammerDittrichBlometal.2017, author = {Klughammer, Johanna and Dittrich, Marcus and Blom, Jochen and Mitesser, Vera and Vogel, Ulrich and Frosch, Matthias and Goesmann, Alexander and M{\"u}ller, Tobias and Schoen, Christoph}, title = {Comparative genome sequencing reveals within-host genetic changes in Neisseria meningitidis during invasive disease}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0169892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159547}, pages = {e0169892}, year = {2017}, abstract = {Some members of the physiological human microbiome occasionally cause life-threatening disease even in immunocompetent individuals. A prime example of such a commensal pathogen is Neisseria meningitidis, which normally resides in the human nasopharynx but is also a leading cause of sepsis and epidemic meningitis. Using N. meningitidis as model organism, we tested the hypothesis that virulence of commensal pathogens is a consequence of within host evolution and selection of invasive variants due to mutations at contingency genes, a mechanism called phase variation. In line with the hypothesis that phase variation evolved as an adaptation to colonize diverse hosts, computational comparisons of all 27 to date completely sequenced and annotated meningococcal genomes retrieved from public databases showed that contingency genes are indeed enriched for genes involved in host interactions. To assess within-host genetic changes in meningococci, we further used ultra-deep whole-genome sequencing of throat-blood strain pairs isolated from four patients suffering from invasive meningococcal disease. We detected up to three mutations per strain pair, affecting predominantly contingency genes involved in type IV pilus biogenesis. However, there was not a single (set) of mutation(s) that could invariably be found in all four pairs of strains. Phenotypic assays further showed that these genetic changes were generally not associated with increased serum resistance, higher fitness in human blood ex vivo or differences in the interaction with human epithelial and endothelial cells in vitro. In conclusion, we hypothesize that virulence of meningococci results from accidental emergence of invasive variants during carriage and without within host evolution of invasive phenotypes during disease progression in vivo.}, language = {en} } @article{SattlerNosterBrunkeetal.2021, author = {Sattler, Janko and Noster, Janina and Brunke, Anne and Plum, Georg and Wiegel, Pia and Kurzai, Oliver and Meis, Jacques F. and Hamprecht, Axel}, title = {Comparison of two commercially available qPCR kits for the detection of Candida auris}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {2}, issn = {2309-608X}, doi = {10.3390/jof7020154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228879}, year = {2021}, abstract = {Candida auris is an emerging pathogen with resistance to many commonly used antifungal agents. Infections with C. auris require rapid and reliable detection methods to initiate successful medical treatment and contain hospital outbreaks. Conventional identification methods are prone to errors and can lead to misidentifications. PCR-based assays, in turn, can provide reliable results with low turnaround times. However, only limited data are available on the performance of commercially available assays for C. auris detection. In the present study, the two commercially available PCR assays AurisID (OLM, Newcastle Upon Tyne, UK) and Fungiplex Candida Auris RUO Real-Time PCR (Bruker, Bremen, Germany) were challenged with 29 C. auris isolates from all five clades and eight other Candida species as controls. AurisID reliably detected C. auris with a limit of detection (LoD) of 1 genome copies/reaction. However, false positive results were obtained with high DNA amounts of the closely related species C. haemulonii, C. duobushaemulonii and C. pseudohaemulonii. The Fungiplex Candida Auris RUO Real-Time PCR kit detected C. auris with an LoD of 9 copies/reaction. No false positive results were obtained with this assay. In addition, C. auris could also be detected in human blood samples spiked with pure fungal cultures by both kits. In summary, both kits could detect C. auris-DNA at low DNA concentrations but differed slightly in their limits of detection and specificity.}, language = {en} } @article{DichtlForsterOrmannsetal.2020, author = {Dichtl, Karl and Forster, Johannes and Ormanns, Steffen and Horns, Heidi and Suerbaum, Sebastian and Seybold, Ulrich and Wagener, Johannes}, title = {Comparison of β-D-Glucan and galactomannan in serum for detection of invasive aspergillosis: retrospective analysis with focus on early diagnosis}, series = {Journal of Fungi}, volume = {6}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof6040253}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216298}, year = {2020}, abstract = {The early diagnosis of invasive aspergillosis (IA) relies mainly on computed tomography imaging and testing for fungal biomarkers such as galactomannan (GM). We compared an established ELISA for the detection of GM with a turbidimetric assay for detection of the panfungal biomarker β-D-glucan (BDG) for early diagnosis of IA. A total of 226 serum specimens from 47 proven and seven probable IA cases were analysed. Sensitivity was calculated for samples obtained closest to the day of IA-diagnosis (d0). Additional analyses were performed by including samples obtained during the presumed course of disease. Most IA cases involved the respiratory system (63\%), and Aspergillus fumigatus was the most frequently isolated species (59\%). For proven cases, sensitivity of BDG/GM analysis was 57\%/40\%. Including all samples dating from -6 to +1 weeks from d0 increased sensitivities to 74\%/51\%. Sensitivity of BDG testing was as high as or higher than GM testing for all subgroups and time intervals analysed. BDG testing was less specific (90-93\%) than GM testing (99-100\%). Combining BDG and GM testing resulted in sensitivity/specificity of 70\%/91\%. Often, BDG testing was positive before GM testing. Our study backs the use of BDG for diagnosis of suspected IA. We suggest combining BDG and GM to improve the overall sensitivity.}, language = {en} } @article{HerrmannMuenstermannStrobeletal.2018, author = {Herrmann, Johannes and Muenstermann, Marcel and Strobel, Lea and Schubert-Unkmeir, Alexandra and Woodruff, Trent M. and Gray-Owen, Scott D. and Klos, Andreas and Johswich, Kay O.}, title = {Complement C5a receptor 1 exacerbates the pathophysiology of N. meningitidis sepsis and is a potential target for disease treatment}, series = {mBio}, volume = {9}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.01755-17}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175792}, pages = {e01755-17}, year = {2018}, abstract = {Sepsis caused by Neisseria meningitidis (meningococcus) is a rapidly progressing, life-threatening disease. Because its initial symptoms are rather unspecific, medical attention is often sought too late, i.e., when the systemic inflammatory response is already unleashed. This in turn limits the success of antibiotic treatment. The complement system is generally accepted as the most important innate immune determinant against invasive meningococcal disease since it protects the host through the bactericidal membrane attack complex. However, complement activation concomitantly liberates the C5a peptide, and it remains unclear whether this potent anaphylatoxin contributes to protection and/or drives the rapidly progressing immunopathogenesis associated with meningococcal disease. Here, we dissected the specific contribution of C5a receptor 1 (C5aR1), the canonical receptor for C5a, using a mouse model of meningococcal sepsis. Mice lacking C3 or C5 displayed susceptibility that was enhanced by >1,000-fold or 100-fold, respectively, consistent with the contribution of these components to protection. In clear contrast, C5ar1\(^{-/-}\) mice resisted invasive meningococcal infection and cleared N. meningitidis more rapidly than wild-type (WT) animals. This favorable outcome stemmed from an ameliorated inflammatory cytokine response to N. meningitidis in C5ar1\(^{-/-}\) mice in both in vivo and ex vivo whole-blood infections. In addition, inhibition of C5aR1 signaling without interference with the complement bactericidal activity reduced the inflammatory response also in human whole blood. Enticingly, pharmacologic C5aR1 blockade enhanced mouse survival and lowered meningococcal burden even when the treatment was administered after sepsis induction. Together, our findings demonstrate that C5aR1 drives the pathophysiology associated with meningococcal sepsis and provides a promising target for adjunctive therapy. Importance: The devastating consequences of N. meningitidis sepsis arise due to the rapidly arising and self-propagating inflammatory response that mobilizes antibacterial defenses but also drives the immunopathology associated with meningococcemia. The complement cascade provides innate broad-spectrum protection against infection by directly damaging the envelope of pathogenic microbes through the membrane attack complex and triggers an inflammatory response via the C5a peptide and its receptor C5aR1 aimed at mobilizing cellular effectors of immunity. Here, we consider the potential of separating the bactericidal activities of the complement cascade from its immune activating function to improve outcome of N. meningitidis sepsis. Our findings demonstrate that the specific genetic or pharmacological disruption of C5aR1 rapidly ameliorates disease by suppressing the pathogenic inflammatory response and, surprisingly, allows faster clearance of the bacterial infection. This outcome provides a clear demonstration of the therapeutic benefit of the use of C5aR1-specific inhibitors to improve the outcome of invasive meningococcal disease.}, language = {en} } @article{FraunholzBernhardtSchuldesetal.2013, author = {Fraunholz, Martin and Bernhardt, J{\"o}rg and Schuldes, J{\"o}rg and Daniel, Rolf and Hecker, Michael and Sinh, Bhanu}, title = {Complete Genome Sequence of Staphylococcus aureus 6850, a Highly Cytotoxic and Clinically Virulent Methicillin-Sensitive Strain with Distant Relatedness to Prototype Strains}, series = {Genome Announcements}, volume = {1}, journal = {Genome Announcements}, number = {5}, doi = {10.1128/genomeA.00775-13}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129294}, pages = {e00775-13}, year = {2013}, abstract = {Staphylococcus aureus is a frequent human commensal bacterium and pathogen. Here we report the complete genome sequence of strain 6850 (spa type t185; sequence type 50 [ST50]), a highly cytotoxic and clinically virulent methicillin-sensitive strain from a patient with complicated S. aureus bacteremia associated with osteomyelitis and septic arthritis.}, language = {en} } @article{BeierleSchobelVogeletal.2021, author = {Beierle, Felix and Schobel, Johannes and Vogel, Carsten and Allgaier, Johannes and Mulansky, Lena and Haug, Fabian and Haug, Julian and Schlee, Winfried and Holfelder, Marc and Stach, Michael and Schickler, Marc and Baumeister, Harald and Cohrdes, Caroline and Deckert, J{\"u}rgen and Deserno, Lorenz and Edler, Johanna-Sophie and Eichner, Felizitas A. and Greger, Helmut and Hein, Grit and Heuschmann, Peter and John, Dennis and Kestler, Hans A. and Krefting, Dagmar and Langguth, Berthold and Meybohm, Patrick and Probst, Thomas and Reichert, Manfred and Romanos, Marcel and St{\"o}rk, Stefan and Terhorst, Yannik and Weiß, Martin and Pryss, R{\"u}diger}, title = {Corona Health — A Study- and Sensor-Based Mobile App Platform Exploring Aspects of the COVID-19 Pandemic}, series = {International Journal of Environmental Research and Public Health}, volume = {18}, journal = {International Journal of Environmental Research and Public Health}, number = {14}, issn = {1660-4601}, doi = {10.3390/ijerph18147395}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242658}, year = {2021}, abstract = {Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July 2020) in eight languages and attracted 7290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.}, language = {en} } @article{TappeLauruschkatStrobeletal.2022, author = {Tappe, Beeke and Lauruschkat, Chris D. and Strobel, Lea and Pantale{\´o}n Garc{\´i}a, Jezreel and Kurzai, Oliver and Rebhan, Silke and Kraus, Sabrina and Pfeuffer-Jovic, Elena and Bussemer, Lydia and Possler, Lotte and Held, Matthias and H{\"u}nniger, Kerstin and Kniemeyer, Olaf and Sch{\"a}uble, Sascha and Brakhage, Axel A. and Panagiotou, Gianni and White, P. Lewis and Einsele, Hermann and L{\"o}ffler, J{\"u}rgen and Wurster, Sebastian}, title = {COVID-19 patients share common, corticosteroid-independent features of impaired host immunity to pathogenic molds}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.954985}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283558}, year = {2022}, abstract = {Patients suffering from coronavirus disease-2019 (COVID-19) are susceptible to deadly secondary fungal infections such as COVID-19-associated pulmonary aspergillosis and COVID-19-associated mucormycosis. Despite this clinical observation, direct experimental evidence for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-driven alterations of antifungal immunity is scarce. Using an ex-vivo whole blood stimulation assay, we challenged blood from twelve COVID-19 patients with Aspergillus fumigatus and Rhizopus arrhizus antigens and studied the expression of activation, maturation, and exhaustion markers, as well as cytokine secretion. Compared to healthy controls, T-helper cells from COVID-19 patients displayed increased expression levels of the exhaustion marker PD-1 and weakened A. fumigatus- and R. arrhizus-induced activation. While baseline secretion of proinflammatory cytokines was massively elevated, whole blood from COVID-19 patients elicited diminished release of T-cellular (e.g., IFN-γ, IL-2) and innate immune cell-derived (e.g., CXCL9, CXCL10) cytokines in response to A. fumigatus and R. arrhizus antigens. Additionally, samples from COVID-19 patients showed deficient granulocyte activation by mold antigens and reduced fungal killing capacity of neutrophils. These features of weakened anti-mold immune responses were largely decoupled from COVID-19 severity, the time elapsed since diagnosis of COVID-19, and recent corticosteroid uptake, suggesting that impaired anti-mold defense is a common denominator of the underlying SARS-CoV-2 infection. Taken together, these results expand our understanding of the immune predisposition to post-viral mold infections and could inform future studies of immunotherapeutic strategies to prevent and treat fungal superinfections in COVID-19 patients.}, language = {en} } @article{GeyerChalmersMacKintoshetal.2013, author = {Geyer, Kathrin K. and Chalmers, Iain W. and MacKintosh, Neil and Hirst, Julie E. and Geoghegan, Rory and Badets, Mathieu and Brophy, Peter M. and Brehm, Klaus and Hoffmann, Karl F.}, title = {Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes}, series = {BMC Genomics}, volume = {14}, journal = {BMC Genomics}, number = {462}, issn = {1471-2164}, doi = {10.1186/1471-2164-14-462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121892}, year = {2013}, abstract = {Background: The phylum Platyhelminthes (flatworms) contains an important group of bilaterian organisms responsible for many debilitating and chronic infectious diseases of human and animal populations inhabiting the planet today. In addition to their biomedical and veterinary relevance, some platyhelminths are also frequently used models for understanding tissue regeneration and stem cell biology. Therefore, the molecular (genetic and epigenetic) characteristics that underlie trophic specialism, pathogenicity or developmental maturation are likely to be pivotal in our continued studies of this important metazoan group. Indeed, in contrast to earlier studies that failed to detect evidence of cytosine or adenine methylation in parasitic flatworm taxa, our laboratory has recently defined a critical role for cytosine methylation in Schistosoma mansoni oviposition, egg maturation and ovarian development. Thus, in order to identify whether this epigenetic modification features in other platyhelminth species or is a novelty of S. mansoni, we conducted a study simultaneously surveying for DNA methylation machinery components and DNA methylation marks throughout the phylum using both parasitic and non-parasitic representatives. Results: Firstly, using both S. mansoni DNA methyltransferase 2 (SmDNMT2) and methyl-CpG binding domain protein (SmMBD) as query sequences, we illustrate that essential DNA methylation machinery components are well conserved throughout the phylum. Secondly, using both molecular (methylation specific amplification polymorphism, MSAP) and immunological (enzyme-linked immunoabsorbent assay, ELISA) methodologies, we demonstrate that representative species (Echinococcus multilocularis, Protopolystoma xenopodis, Schistosoma haematobium, Schistosoma japonicum, Fasciola hepatica and Polycelis nigra) within all four platyhelminth classes (Cestoda, Monogenea, Trematoda and 'Turbellaria') contain methylated cytosines within their genome compartments. Conclusions: Collectively, these findings provide the first direct evidence for a functionally conserved and enzymatically active DNA methylation system throughout the Platyhelminthes. Defining how this epigenetic feature shapes phenotypic diversity and development within the phylum represents an exciting new area of metazoan biology.}, language = {en} } @article{StreckGaalForsteretal.2021, author = {Streck, Laura Elisa and Gaal, Chiara and Forster, Johannes and Konrads, Christian and Hertzberg-Boelch, Sebastian Philipp von and Rueckl, Kilian}, title = {Defining a synovial fluid white blood cell count threshold to predict periprosthetic infection after shoulder arthroplasty}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {1}, issn = {2077-0383}, doi = {10.3390/jcm11010050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252275}, year = {2021}, abstract = {Background: The diagnosis of periprosthetic shoulder infection (PSI) requires a thorough diagnostic workup. Synovial fluid aspiration has been proven to be a reliable tool in the diagnosis of joint infections of the lower extremity, but shoulder specific data is limited. This study defines a threshold for synovial fluid white blood cell count (WBC) and assesses the reliability of microbiological cultures. Methods: Retrospective study of preoperative and intraoperative fluid aspiration of 31 patients who underwent a revision of a shoulder arthroplasty (15 with PSI defined by IDSA criteria, 16 without infection). The threshold for WBC was calculated by ROC/AUC analysis. Results: WBC was significantly higher in patients with PSI than in other patients. A threshold of 2800 leucocytes/mm\(^3\) showed a sensitivity of 87\% and a specificity of 88\% (AUROC 0.92). Microbiological cultures showed a sensitivity of 76\% and a specificity of 100\%. Conclusions: A threshold of 2800 leucocytes/mm\(^3\) in synovial fluid can be recommended to predict PSI. Microbiological culture has an excellent specificity and allows for targeted antibiotic therapy. Joint aspiration presents an important pillar to diagnose PSI.}, language = {en} } @article{SuratVogelWiegeringetal.2021, author = {Surat, G{\"u}zin and Vogel, Ulrich and Wiegering, Armin and Germer, Christoph-Thomas and Lock, Johan Friso}, title = {Defining the scope of antimicrobial stewardship interventions on the prescription quality of antibiotics for surgical intra-abdominal infections}, series = {Antibiotics}, volume = {10}, journal = {Antibiotics}, number = {1}, issn = {2079-6382}, doi = {10.3390/antibiotics10010073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223034}, year = {2021}, abstract = {Background: The aim of this study was to assess the impact of antimicrobial stewardship interventions on surgical antibiotic prescription behavior in the management of non-elective surgical intra-abdominal infections, focusing on postoperative antibiotic use, including the appropriateness of indications. Methods: A single-center quality improvement study with retrospective evaluation of the impact of antimicrobial stewardship measures on optimizing antibacterial use in intra-abdominal infections requiring emergency surgery was performed. The study was conducted in a tertiary hospital in Germany from January 1, 2016, to January 30, 2020, three years after putting a set of antimicrobial stewardship standards into effect. Results: 767 patients were analyzed (n = 495 in 2016 and 2017, the baseline period; n = 272 in 2018, the antimicrobial stewardship period). The total days of therapy per 100 patient days declined from 47.0 to 42.2 days (p = 0.035). The rate of patients receiving postoperative therapy decreased from 56.8\% to 45.2\% (p = 0.002), comparing both periods. There was a significant decline in the rate of inappropriate indications (17.4\% to 8.1 \%, p = 0.015) as well as a significant change from broad-spectrum to narrow-spectrum antibiotic use (28.8\% to 6.5\%, p ≤ 0.001) for postoperative therapy. The significant decline in antibiotic use did not affect either clinical outcomes or the rate of postoperative wound complications. Conclusions: Postoperative antibiotic use for intra-abdominal infections could be significantly reduced by antimicrobial stewardship interventions. The identification of inappropriate indications remains a key target for antimicrobial stewardship programs.}, language = {en} }