@misc{Gross2022, type = {Master Thesis}, author = {Groß, Lennart}, title = {Point-spread function engineering for single-molecule localization microscopy in brain slices}, doi = {10.25972/OPUS-28259}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282596}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Single-molecule localization microscopy (SMLM) is the method of choice to study biological specimens on a nanoscale level. Advantages of SMLM imply its superior specificity due to targeted molecular fluorescence labeling and its enhanced tissue preservation compared to electron microscopy, while reaching similar resolution. To reveal the molecular organization of protein structures in brain tissue, SMLM moves to the forefront: Instead of investigating brain slices with a thickness of a few µm, measurements of intact neuronal assemblies (up to 100 µm in each dimension) are required. As proteins are distributed in the whole brain volume and can move along synapses in all directions, this method is promising in revealing arrangements of neuronal protein markers. However, diffraction-limited imaging still required for the localization of the fluorophores is prevented by sample-induced distortion of emission pattern due to optical aberrations in tissue slices from non-superficial planes. In particular, the sample causes wavefront dephasing, which can be described as a summation of Zernike polynomials. To recover an optimal point spread function (PSF), active shaping can be performed by the use of adaptive optics. The aim of this thesis is to establish a setup using a deformable mirror and a wavefront sensor to actively shape the PSF to correct the wavefront phases in a super-resolution microscope setup. Therefore, fluorescence-labeled proteins expressed in different anatomical regions in brain tissue will be used as experiment specimen. Resolution independent imaging depth in slices reaching tens of micrometers is aimed.}, subject = {Einzelmolek{\"u}lmikroskopie}, language = {en} } @misc{Lan2022, type = {Master Thesis}, author = {Lan, Kai-Yi}, title = {Gender and Medicine in the Ming Dynasty: Tan Yunxian's (1461-1556) Medical Case Book}, doi = {10.25972/OPUS-28886}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288862}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This project explores Tan Yunxian's journey of becoming a female doctor in the Ming dynasty. Among all the surviving Ming medical books, Tan Yunxian's medical case book is the only one that was written by a woman. It seems natural, considering she had both scholar-official and medical family backgrounds. Yet, social expectations consider it more suitable for a lady to remain in the household, and not treat patients outside. To legitimize Tan Yunxian's pursuit of a medical career, she applied several strategies to resolve potential criticism toward her and her family. These strategies are analyzed through her autobiographical preface in her medical case book. The project also explores Ming male literatis' perspectives toward Tan Yunxian, the factors that contributed to the preservation and publication of her medical case book, and examined her medical cases under the social-historical and micro-history contexts.}, language = {en} }