@article{DembekBarquistBoinettetal.2015, author = {Dembek, Marcin and Barquist, Lars and Boinett, Christine J. and Cain, Amy K. and Mayho, Matthew and Lawley, Trevor D. and Fairweather, Neil F. and Fagan, Robert P.}, title = {High-throughput analysis of gene essentiality and sporulation in Clostridium difficile}, series = {mBio}, volume = {6}, journal = {mBio}, number = {2}, doi = {10.1128/mBio.02383-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143745}, pages = {e02383-14}, year = {2015}, abstract = {Clostridium difficile is the most common cause of antibiotic-associated intestinal infections and a significant cause of morbidity and mortality. Infection with C. difficile requires disruption of the intestinal microbiota, most commonly by antibiotic usage. Therapeutic intervention largely relies on a small number of broad-spectrum antibiotics, which further exacerbate intestinal dysbiosis and leave the patient acutely sensitive to reinfection. Development of novel targeted therapeutic interventions will require a detailed knowledge of essential cellular processes, which represent attractive targets, and species-specific processes, such as bacterial sporulation. Our knowledge of the genetic basis of C. difficile infection has been hampered by a lack of genetic tools, although recent developments have made some headway in addressing this limitation. Here we describe the development of a method for rapidly generating large numbers of transposon mutants in clinically important strains of C. difficile. We validated our transposon mutagenesis approach in a model strain of C. difficile and then generated a comprehensive transposon library in the highly virulent epidemic strain R20291 (027/BI/NAP1) containing more than 70,000 unique mutants. Using transposon-directed insertion site sequencing (TraDIS), we have identified a core set of 404 essential genes, required for growth in vitro. We then applied this technique to the process of sporulation, an absolute requirement for C. difficile transmission and pathogenesis, identifying 798 genes that are likely to impact spore production. The data generated in this study will form a valuable resource for the community and inform future research on this important human pathogen.}, language = {en} } @phdthesis{Schneider2015, author = {Schneider, Johannes}, title = {Functional diversification of membrane microdomains in Bacillus subtilis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Eukaryotic cells are considered as evolutionary complex organisms because they possess organelles that enable them to regulate the spatio-temporal organization of cellular processes. Spatio-temporal organization of signal transduction cascades occurs in eukaryotic cells via organization of membrane-associated microdomains or lipid rafts. Lipid rafts are nanoscale-sized domains in the plasma membrane that are constituted by a specific set of lipids and proteins and harbor a number of proteins related to signal transduction and trafficking. The integrity of lipid rafts is important for the assembly and functional coordination of a plethora of signaling networks and associated processes. This integrity is partially mediated by a chaperone protein called flotillin. Disruption of lipid raft integrity, for example via depletion or overproduction of flotillin, alters raft-associated signal transduction cascades and causes severe diseases like Alzheimer's, Parkinson's disease or cardiovascular disease. It was traditionally assumed that a sophisticated compartmentalization of cellular processes like the one exhibited in lipid rafts was exclusive to eukaryotic cells and therefore, lipid rafts have been considered as a hallmark in the evolution of cellular complexity, suggesting that prokaryotic cells were too simple organisms to organize such sophisticated membrane platforms. However, it was recently discovered that bacteria are also able to organize Functional Membrane Microdomains (FMMs) in their cellular membrane that are able to organize and catalyze the functionality of many diverse cellular processes. These FMMs of bacterial membranes contain flotillin-like proteins which play important roles in the organization of FMM-associated cellular processes. In this dissertation I describe the structural and biological significance of the existence of two distinct flotillin proteins, FloA and FloT, in the FMMs of the bacterial model Bacillus subtilis. Localization studies, proteomic data and transcriptomic analyses show that FloA and FloT are individual scaffold proteins that activate different regulatory programs during bacterial growth. Using the tractable bacterial model system, I show that the functionality of important regulatory proteins, like the protease FtsH or the signaling kinases KinC, PhoR and ResE, is linked to the activity of FMMs and that this is a direct consequence of the scaffold activity of the bacterial flotillins. FloA and FloT distribute heterogeneously along the FMMs of B. subtilis thereby generating a heterogeneous population of FMMs that compartmentalize different signal transduction cascades. Interestingly, diversification of FMMs does not occur randomly, but rather in a controlled spatio-temporal program to ensure the activation of given signaling networks at the right place and time during cell growth.}, subject = {Heubacillus}, language = {en} }