@article{GilbertBoehmEdenetal.2016, author = {Gilbert, Fabian and B{\"o}hm, Dirk and Eden, Lars and Schmalzl, Jonas and Meffert, Rainer H. and K{\"o}stler, Herbert and Weng, Andreas M. and Ziegler, Dirk}, title = {Comparing the MRI-based Goutallier Classification to an experimental quantitative MR spectroscopic fat measurement of the supraspinatus muscle}, series = {BMC Musculoskeletal Disorders}, volume = {17}, journal = {BMC Musculoskeletal Disorders}, number = {355}, doi = {10.1186/s12891-016-1216-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147788}, year = {2016}, abstract = {Background The Goutallier Classification is a semi quantitative classification system to determine the amount of fatty degeneration in rotator cuff muscles. Although initially proposed for axial computer tomography scans it is currently applied to magnet-resonance-imaging-scans. The role for its clinical use is controversial, as the reliability of the classification has been shown to be inconsistent. The purpose of this study was to compare the semi quantitative MRI-based Goutallier Classification applied by 5 different raters to experimental MR spectroscopic quantitative fat measurement in order to determine the correlation between this classification system and the true extent of fatty degeneration shown by spectroscopy. Methods MRI-scans of 42 patients with rotator cuff tears were examined by 5 shoulder surgeons and were graduated according to the MRI-based Goutallier Classification proposed by Fuchs et al. Additionally the fat/water ratio was measured with MR spectroscopy using the experimental SPLASH technique. The semi quantitative grading according to the Goutallier Classification was statistically correlated with the quantitative measured fat/water ratio using Spearman's rank correlation. Results Statistical analysis of the data revealed only fair correlation of the Goutallier Classification system and the quantitative fat/water ratio with R = 0.35 (p < 0.05). By dichotomizing the scale the correlation was 0.72. The interobserver and intraobserver reliabilities were substantial with R = 0.62 and R = 0.74 (p < 0.01). Conclusion The correlation between the semi quantitative MRI based Goutallier Classification system and MR spectroscopic fat measurement is weak. As an adequate estimation of fatty degeneration based on standard MRI may not be possible, quantitative methods need to be considered in order to increase diagnostic safety and thus provide patients with ideal care in regard to the amount of fatty degeneration. Spectroscopic MR measurement may increase the accuracy of the Goutallier classification and thus improve the prediction of clinical results after rotator cuff repair. However, these techniques are currently only available in an experimental setting.}, language = {en} } @article{PetritschKoestlerGassenmaieretal.2016, author = {Petritsch, Bernhard and K{\"o}stler, Herbert and Gassenmaier, Tobias and Kunz, Andreas S and Bley, Thorsten A and Horn, Michael}, title = {An investigation into potential gender-specific differences in myocardial triglyceride content assessed by \(^{1}\)H-Magnetic Resonance Spectroscopy at 3Tesla}, series = {Journal of International Medical Research}, volume = {44}, journal = {Journal of International Medical Research}, number = {3}, doi = {10.1177/0300060515603884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168808}, pages = {585-591}, year = {2016}, abstract = {Objective: Over the past decade, myocardial triglyceride content has become an accepted biomarker for chronic metabolic and cardiac disease. The purpose of this study was to use proton (hydrogen 1)-magnetic resonance spectroscopy (\(^{1}\)H-MRS) at 3Tesla (3 T) field strength to assess potential gender-related differences in myocardial triglyceride content in healthy individuals. Methods: Cardiac MR imaging was performed to enable accurate voxel placement and obtain functional and morphological information. Double triggered (i.e., ECG and respiratory motion gating) \(^{1}\)H-MRS was used to quantify myocardial triglyceride levels for each gender. Two-sample t-test and Mann-Whitney U-test were used for statistical analyses. Results: In total, 40 healthy volunteers (22 male, 18 female; aged >18 years and age matched) were included in the study. Median myocardial triglyceride content was 0.28\% (interquartile range [IQR] 0.17-0.42\%) in male and 0.24\% (IQR 0.14-0.45\%) in female participants, and no statistically significant difference was observed between the genders. Furthermore, no gender-specific difference in ejection fraction was observed, although on average, male participants presented with a higher mean ± SD left ventricular mass (136.3 ± 25.2 g) than female participants (103.9 ± 16.1 g). Conclusions: The study showed that \(^{1}\)H-MRS is a capable, noninvasive tool for acquisition of myocardial triglyceride metabolites. Myocardial triglyceride concentration was shown to be unrelated to gender in this group of healthy volunteers.}, language = {en} }