@article{ChilloKleinertLautzetal.2016, author = {Chillo, Omary and Kleinert, Eike Christian and Lautz, Thomas and Lasch, Manuel and Pagel, Judith-Irina and Heun, Yvonn and Troidl, Kerstin and Fischer, Silvia and Caballero-Martinez, Amelia and Mauer, Annika and Kurz, Angela R. M. and Assmann, Gerald and Rehberg, Markus and Kanse, Sandip M. and Nieswandt, Bernhard and Walzog, Barbara and Reichel, Christoph A. and Mannell, Hanna and Preissner, Klaus T. and Deindl, Elisabeth}, title = {Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function}, series = {Cell Reports}, volume = {16}, journal = {Cell Reports}, number = {8}, doi = {10.1016/j.celrep.2016.07.040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164800}, pages = {2197-2207}, year = {2016}, abstract = {The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis) is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit+/CXCR-4+ cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases.}, language = {en} }