@article{DekantKlaunig2016, author = {Dekant, Wolfgang and Klaunig, James E.}, title = {Toxicology of decamethylcyclopentasiloxane (D5)}, series = {Regulatory Toxicology and Pharmacology}, volume = {74}, journal = {Regulatory Toxicology and Pharmacology}, number = {Supplement}, doi = {10.1016/j.yrtph.2015.06.011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190914}, pages = {S67-S76}, year = {2016}, abstract = {Decamethylcyclopentasiloxane (D5) is a cyclic siloxane used in the formulation of consumer products as well as an industrial intermediate. A summary of the previous studies on the toxicology of D5 is provided. Toxicokinetic studies with D5 after dermal administration demonstrate a very low uptake of due to rapid evaporation. Following inhalation exposure, exhalation of unchanged D5 and excretion of metabolites with urine are major pathways for clearance in mammals. Due to this rapid clearance by exhalation, the potential for bioaccumulation of D5 is considered unlikely. The available toxicity data on D5 adequately cover the relevant endpoints regarding potential human health hazards. D5 was not DNA reactive or mutagenic in standard in vitro and in vivo test systems. D5 also did not induce developmental and reproductive toxicity in appropriately performed studies. In repeated studies in rats with subacute, subchronic and chronic inhalation exposure, mild effects on the respiratory tract typically seen after inhalation of irritating materials, increases in liver weight (28- and 90-day inhalation studies), and a small increase in the incidence of uterine adenocarcinoma (uterine tumor) in female rats (two-year inhalation chronic bioassay) were observed. The liver effects induced by D5 were consistent with D5 as a weak "phenobarbital-like" inducer of xenobiotic metabolizing enzymes and these effects are considered to be an adaptive response. Mechanistic studies to elucidate the mode-of-action for uterine tumor induction suggest an interaction of D5 with dopamine signal transduction pathways altering the pituitary control of the estrus cycle. The resulting estrogen imbalance may cause the small increase in uterine tumor incidence at the highest D5-exposure concentration over that seen in control rats. A genotoxic mechanism or a direct endocrine activity of D5 is not supported as a mode-of-action to account for the induction of uterine tumors by the available data.}, language = {en} } @article{KlaunigDekantPlotzkeetal.2016, author = {Klaunig, James E. and Dekant, Wolfgang and Plotzke, Kathy and Scialli, Anthony R.}, title = {Biological relevance of decamethylcyclopentasiloxane (D5) induced rat uterine endometrial adenocarcinoma tumorigenesis: Mode of action and relevance to humans}, series = {Regulatory Toxicology and Pharmacology}, volume = {74}, journal = {Regulatory Toxicology and Pharmacology}, number = {Supplement}, doi = {10.1016/j.yrtph.2015.06.021}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190952}, pages = {S44-S56}, year = {2016}, abstract = {Decamethylcyclopentasiloxane (D5) is a cyclic siloxane used in the production and formulation of consumer products with potential exposure to manufacturing workers, consumer, and the general public. Following a combined 2-year inhalation chronic bioassay performed in Fischer 344 (F344) rats, an increase in uterine endometrial adenocarcinomas was noted at the highest concentration to which animals were exposed. No other neoplasms were detected. In this study, a dose of 160 ppm produced an incidence of 8\% endometrial adenocarcinomas. Based on a number of experimental studies with D5, the current manuscript examines the biological relevance and possible modes of action for the uterine endometrial adenocarcinomas observed in the rat following chronic exposure to D5. Variable rates of spontaneous uterine endometrial adenocarcinomas have been reported for untreated F344 CrIBr rats. As such, we concluded that the slight increase in uterine endometrial adenocarcinomas observed in the D5 chronic bioassay might not be the result of D5 exposure but may be related to variability of the spontaneous tumor incidence in this strain of rat. However, if the uterine endometrial adenocarcinomas are related to D5-exposure, alteration in the estrous cycle in the aging F344 rat is the most likely mode of action. D5 is not genotoxic or estrogenic. The alteration in the estrous cycle is caused by a decrease in progesterone with an increase in the estrogen:progesterone ratio most likely induced by a decrease in prolactin concentration. Available data support that exposure to D5 influences prolactin concentration. Although the effects on prolactin concentrations in a number of experiments were not always consistent, the available data support the conclusion that D5 is acting via a dopamine receptor agonist-like mechanism to alter the pituitary control of the estrous cycle. In further support of this mode of action, studies in F344 aged animals showed that the effects of D5 on estrous cyclicity produced a response consistent with a dopamine-like effect and further suggest that D5 is accelerating the aging of the reproductive endocrine system in the F344 rat utilized in this study. This mode of action for uterine endometrial adenocarcinoma tumorigenesis is not relevant for humans.}, language = {en} }