@phdthesis{Reinhold2016, author = {Reinhold, Ann-Kristin}, title = {New players in neuropathic pain? microRNA expression in dorsal root ganglia and differential transcriptional profiling in primary sensory neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140314}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Neuropathic pain, caused by neuronal damage, is a severely impairing mostly chronic condition. Its underlying molecular mechanisms have not yet been thoroughly understood in their variety. In this doctoral thesis, I investigated the role of microRNAs (miRNAs) in a murine model of peripheral neuropathic pain. MiRNAs are small, non-coding RNAs known to play a crucial role in post-transcriptional gene regulation, mainly in cell proliferation and differentiation. Initially, expression patterns in affected dorsal root ganglia (DRG) at different time points after setting a peripheral nerve lesion were studied. DRG showed an increasingly differential expression pattern over the course of one week. Interestingly, a similar effect, albeit to a smaller extent, was observed in corresponding contralateral ganglia. Five miRNA (miR-124, miR-137, miR-183, miR-27b, and miR-505) were further analysed. qPCR, in situ hybridization, and bioinformatical analysis point towards a role for miR-137 and -183 in neuropathic pain as both were downregulated. Furthermore, miR-137 is shown to be specific for non-peptidergic non-myelinated nociceptors (C fibres) in DRG. As the ganglia consist of highly heterocellular tissue, I also developed a neuron-specific approach. Primarily damaged neurons were separated from intact adjacent neurons using fluorescence-activated cell-sorting and their gene expression pattern was analysed using a microarray. Thereby, not only were information obtained about mRNA expression in both groups but, by bioinformatical tools, also inferences on miRNA involvement. The general expression pattern was consistent with previous findings. Still, several genes were found differentially expressed that had not been described in this context before. Among these are corticoliberin or cation-regulating proteins like Otopetrin1. Bioinformatical data conformed, in part, to results from whole DRG, e.g. they implied a down-regulation of miR-124, -137, and -183. However, these results were not significant. In summary, I found that a) miRNA expression in DRG is influenced by nerve lesions typical of neuropathic pain and that b) these changes develop simultaneously to over-expression of galanin, a marker for neuronal damage. Furthermore, several miRNAs (miR-183, -137) exhibit distinct expression patterns in whole-DRG as well as in neuron-specific approaches. Therefore, further investigation of their possible role in initiation and maintenance of neuropathic pain seems promising. Finally, the differential expression of genes like Corticoliberin or Otopetrin 1, previously not described in neuropathic pain, has already resulted in follow-up projects.}, subject = {Schmerzforschung}, language = {en} } @phdthesis{Leinders2016, author = {Leinders, Mathias}, title = {microRNAs in chronic pain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144395}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Chronic pain is a common problem in clinical practice, not well understood clinically, and frequently tough to satisfactorily diagnose. Because the pathophysiology is so complex, finding effective treatments for people with chronic pain has been overall less than successful and typically reduced to an unsatisfactory trial-and-error process, all of which translates into a significant burden to society. Knowledge of the mechanisms underlying the development of chronic pain, and moreover why some patients experience pain and others not, may aid in developing specific treatment regimens. Although nerve injuries are major contributors to pain chronification, they cannot explain the entire phenomenon. Considerable research has underscored the importance of the immune system for the development and maintenance of chronic pain, albeit the exact factors regulating inflammatory reactions remain unclear. Understanding the putative molecular and cellular regulator switches of inflammatory reactions will open novel opportunities for immune modulatory analgesics with putatively higher specificity and less adverse effects. It has become clear that small, non- coding RNA molecules known as microRNAs are in fact potent regulators of many thousands of genes and possibly cross-communicate between cellular pathways in multiple systems acting as so-called "master-switches". Aberrant expression of miRNAs is now implicated in numerous disorders, including nerve injuries as well as in inflammatory processes. Moreover, compelling evidence supports the idea that miRNAs also regulate pain, and in analogy to the oncology field aid in the differential diagnosis of disease subtypes. In fact, first reports describing characteristic miRNA expression profiles in blood or cerebrospinal fluid of patients with distinct pain conditions are starting to emerge, however evidence linking specific miRNA expression profiles to specific pain disorders is still insufficient. The present thesis aimed at first, identifying specific miRNA signatures in two distinct chronic pain conditions, namely peripheral neuropathies of different etiologies and fibromyalgia syndrome. Second, it aimed at identifying miRNA profiles to better understand potential factors that differentiate painful from painless neuropathies and third, study the mechanistic role of miRNAs in the pathophysiology of pain, to pave the way for new druggable targets. Three studies were conducted in order to identify miRNA expression signatures that are characteristic for the given chronic pain disorder. The first study measured expression of miR-21, miR-146a and miR-155 in white blood cells, skin and nerve biopsies of patients with peripheral neuropathies. It shows that peripheral neuropathies of different etiologies are associated with increased peripheral miR-21 and miR-146a, but decreased miR-155 expression. More importantly, it was shown that painful neuropathies have increased sural nerve miR-21 and miR-155 expression, but reduced miR-146a and miR-155 expression in distal skin of painful neuropathies. These results point towards the potential use of miRNAs profiles to stratify painful neuropathies. The seconds study extends these findings and first analyzed the role of miR-132-3p in patients and subsequently in an animal model of neuropathic pain. Interestingly, miR-132-3p was upregulated in white blood cells and sural nerve biopsies of patients with painful neuropathies and in animals after spared nerve injury. Pharmacologically modulating the expression of miR-132-3p dose-dependently reversed pain behavior and pain aversion, indicating the pro-nociceptive effect of miR-132-3p in chronic pain. This study thus demonstrates the potential analgesic impact by modulating miRNA expression. Fibromyalgia is associated with chronic widespread pain and, at least in a subgroup, impairment in small nerve fiber morphology and function. Interestingly, the disease probably comprises subgroups with different underlying pathomechanisms. In accordance with this notion, the third study shows that fibromyalgia is associated with both aberrant white blood cell and cutaneous miRNA expression. Being the first of its kind, this study identified miR-let-7d and its downstream target IGF-1R as potential culprit for impaired small nerve fiber homeostasis in a subset of patients with decreased intra-epidermal nerve fiber density. The work presented in this thesis is a substantial contribution towards the goal of better characterizing chronic pain based on miRNA expression signatures and thus pave the way for new druggable targets.}, subject = {miRNS}, language = {en} } @phdthesis{Krebs2016, author = {Krebs, Markus Karl Ludwig}, title = {microRNA-221 und ihr Einfluss auf Zytokin-vermittelte Signalwege im Hochrisiko-Karzinom der Prostata}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137644}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Der klinische Verlauf von Prostatakarzinom(PCa)-Erkrankungen ist extrem unterschiedlich und l{\"a}sst sich mit den bisher {\"u}blichen Verfahren wie der feingeweblichen Beurteilung der Prostatastanzbiopsie bzw. des OP-Pr{\"a}parates und der PSA-Wert-Bestimmung nur unzureichend vorhersagen. F{\"u}r eine bessere Versorgung von PCa-Patienten sind deshalb neuartige Marker notwendig, die das individuelle Progressions-Risiko bestimmen. Ein hoffnungsvoller Ansatz sind miRNA-Vertreter als Prognose-Parameter. Besonders interessant in dieser Hinsicht ist miR-221, die im PCa-Gewebe signifikant niedriger exprimiert wird. Jedoch existieren f{\"u}r diese in den meisten Neoplasien als Onkogen betrachtete miRNA kaum Erkl{\"a}rungsans{\"a}tze f{\"u}r eine tumorsuppressive Funktion im PCa. Die vorliegende Arbeit konnte mit Hilfe von Microarray-basierten Expressionsanalysen und deren bioinformatischer Auswertung sowie zell- und molekularbiologischen Experimenten erstmals zeigen, dass miR-221 das protektive Interferon-Signal in PCa-Zellen st{\"a}rkt und auf diese Weise deren Proliferation hemmt. Daneben konnten zwei prominente Inhibitoren dieses Signals, IRF2 und SOCS3, als neue Zielgene von miR-221 in vitro nachgewiesen und eine Korrelation von miR-221 mit diesen Zielgenen auch in PCa-Nativmaterial identifiziert werden. Somit konnte erstmals ein Mechanismus der - vorher lediglich aufgrund der Herabregulation in PCa-Nativmaterial postulierten - tumorsuppressiven Funktion von miR-221 im Rahmen der PCa-Entstehung und -Progression dargestellt werden. Eine Aktivierung des JAK / STAT-vermittelten Interferon-Signals durch miR-221 erscheint auch in einem breiteren infektiologischen Kontext interessant - sind doch zahlreiche Virenarten wie das HI-Virus, Hepatitis- und Herpesviren in der Lage, die zellul{\"a}re miR-221-Expression zu vermindern und auf diese Weise wohl das antivirale Interferon-Signal zu umgehen. Die Erh{\"o}hung der zellul{\"a}ren miR-221-Spiegel k{\"o}nnte nach diesem Prinzip auch Interferon-basierte Therapie-Strategien unterst{\"u}tzen bzw. erst erm{\"o}glichen. F{\"u}r das PCa m{\"u}ssen weitere experimentelle sowie klinisch-translationale Untersuchungen zeigen, ob miR-221 als Bestandteil einer Biomarker-Signatur dazu beitr{\"a}gt, Patienten mit einem letalen PCa fr{\"u}hzeitig zu identifizieren und der dringend notwendigen Prim{\"a}rtherapie bzw. einer adjuvanten Behandlung zuzuf{\"u}hren. Im Gegenzug k{\"o}nnte zahlreichen Patienten, deren (hohe) miR-221-Expression im Tumorgewebe einen g{\"u}nstigeren Verlauf prognostiziert, die {\"u}berm{\"a}ßige Therapie erspart werden.}, subject = {miRNS}, language = {de} }