@phdthesis{Renziehausen2014, author = {Renziehausen, Klaus}, title = {Wechselwirkung von Molek{\"u}len mit Laserpulsen: Untersuchungen zur numerischen Implementierung zeitabh{\"a}ngiger St{\"o}rungstheorie und zu Effekten der absoluten Phase von Laserpulsen beliebiger L{\"a}nge}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In dieser Dissertation wurden zwei Aspekte der Wechselwirkung von Laserpulsen mit Molek{\"u}len betrachtet: Erstens wurden numerische Algorithmen, die auf der zeitabh{\"a}ngigen St{\"o}rungstheorie basieren, zur Berechnung von quantenmechanischen Wellenfunktionen analysiert. Zweitens wurden Effekte der absoluten Phase (Carrier envelope phase = CEP) von Laserpulsen bei der Laseranregung molekularer Systeme analysiert. In den Analysen zum ersten Aspekt wurden zwei verschiedene Algorithmen - in dieser Arbeit als simple und improved algorithm bezeichnet - verwendet, und die Normabweichung von mit diesen Algorithmen berechneten Wellenfunktionen untersucht. Es konnte gezeigt werden, dass diese Normabweichung f{\"u}r beide Algorithmen in zwei unterschiedliche Beitr{\"a}ge zerlegt werden kann. Der erste Normabweichungsbeitrag tritt aufgrund der numerischen Diskretisierung der Zeit auf und verschwindet, wenn der Zeitschritt, der die Dauer der Intervalle f{\"u}r diese Diskretisierung angibt, gegen Null geht. Man kann den ersten Normabweichungsbeitrag mit exzellenter Genauigkeit berechnen und seine Eigenschaften, die sich f{\"u}r die beiden Algorithmen erheblich unterschieden, eingehend analysieren. Der zweite Normabweichungsbeitrag tritt dadurch auf, dass die zeitabh{\"a}ngige St{\"o}rungstheorie nicht normerhaltend ist, und geht daher gegen Null, wenn die St{\"o}rungsordnung gegen unendlich geht. Dieser zweite Beitrag ist außerdem in guter N{\"a}herung unabh{\"a}ngig vom Zeitschritt und f{\"u}r beide Algorithmen n{\"a}herungsweise gleich. Des Weiteren kann man das Verhalten des zweiten Normabweichungsbeitrags im Gegensatz zum ersten Beitrag nur qualitativ beschreiben. F{\"u}r die Analyse zum zweiten Themengebiet dieser Arbeit, den CEP-Effekten, wurde betrachtet, ob CEP-Effekte auch f{\"u}r Laserpulse beliebiger L{\"a}nge auftreten k{\"o}nnen. {\"U}ber eine analytische Betrachtung erkennt man, dass dies f{\"u}r ein Zweiniveausystem nur dann der Fall ist, wenn beide Zust{\"a}nde vor Beginn der Wechselwirkung des Systems mit dem Laserpuls besetzt sind. Man kann aus diesem Ergebnis folgern, dass f{\"u}r einen Laserpuls, der zwei elektronische Zust{\"a}nde eines Molek{\"u}ls {\"u}ber Einphotonen{\"u}berg{\"a}nge koppelt, in der Regel kein CEP-Effekt f{\"u}r beliebige L{\"a}ngen dieses Pulses auftritt. Der Grund daf{\"u}r ist, dass vor der Wechselwirkung eines molekularen Systems mit einem Laserpuls f{\"u}r dieses {\"u}blicherweise nur der elektronische Grundzustand besetzt ist. In dieser Arbeit wird gezeigt, dass dieses Problem durch ein spezielles Zweipulsschema f{\"u}r die Anregung eines molekularen Systems gel{\"o}st werden kann. F{\"u}r dieses Pulsschema wird ein erster Puls verwendet, der zeitlich so kurz ist, dass Wellenpakete in mehreren elektronischen Zust{\"a}nden angeregt werden. Der nachfolgende zweite Laserpuls ist spektral schmal, und seine zeitliche L{\"a}nge kann beliebig groß gew{\"a}hlt werden. Man erh{\"a}lt f{\"u}r dieses Pulsschema Observablen, die von der CEP des zweiten Pulses, aber nicht von der CEP des ersten Pulses abh{\"a}ngen; somit ist ein CEP-Effekt nachweisbar. Derartige Observablen sind geometrische Asymmetrien f{\"u}r Zerfallsprodukte von Photodissoziationsreaktionen. Insbesondere unterscheidet sich das hier vorgestellte Pulsschema von anderen Zweipulsschemata, f{\"u}r welche Observablen von der Differenz der CEPs beider Pulse abh{\"a}ngen, aber nicht von der CEP einer der beiden Pulse allein.}, subject = {St{\"o}rungstheorie}, language = {de} } @phdthesis{Kritzer2012, author = {Kritzer, Robert}, title = {Quantum dynamics in dissipative environments}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73456}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In this thesis, the influence of an environment on molecules and, in particular, on the quantum control of such systems is investigated. Different approaches to describe system-bath dynamics are implemented and applied. The inclusion of a dissipation term in the system Hamiltonian leads to energy loss and relaxation to the ground state. As a first application, the isomerisation reaction in an aromatic complex is treated. It is shown that this simple model is able to reproduce results of time-resolved spectroscopic measurements. Next, the influence of noise is investigated. The incorporation of fluctuations reveals that energy is not conserved and coherences are destroyed. As an example, the quantum control of a population transfer in Na2 is examined. The efficiency of control processes is studied in dependence on the strength of the noise and different system-bath couplings. Starting with the unperturbed system, Local Control Theory is applied to construct a field which selectively transfers population into a single excited electronic state. The coupling to the bath is then switched on to monitor the dependence of the coupling strength on the transfer efficiency. The perturbation of the bath effects the Na2 molecule in such a way that potential energy curves and transition dipole moments are distorted. An important result is that already elastic collisions lead to a substantial loss of control efficiency. The most promising approach used in this thesis is the stochastic Schr{\"o}dinger equation. It is equivalent to the commonly employed descriptions of system-bath dynamics within the reduced density matrix formalism. It includes decoherences and dissipation caused by elastic and inelastic collisions. Our contribution is the incorporation of laser excitation into the kinetic Monte-Carlo scheme. Thus we are able to apply this stochastic approach to the quantum control of population transfer in the sodium dimer. Because within our description it is possible to separate pure dephasing, inelastic transitions, and coherent time-evolution, we can identify the relative influence of these processes on the control efficiency. This leads to a far more physical picture of the basic processes underlying the perturbations of an environment then what a reduced density matrix description can provide. In utilising the stochastic wave function approach instead of the density matrix formalism, the computations are quite efficient. The stochastic Schr{\"o}dinger equation is realised by N independent runs, where, in our case, an ensemble size of N = 1000 gives converged results. The efficiency of the laser control process is studied as a function of temperature and collision rates. A rise in temperature (or collision rate) reeffects a stronger fluctuation and thus results in a less efficient transfer by the control field. Though the Gaussian fluctuations used here do not strictly represent 'white'- noise, since a deterministic machine is not able to produce uncorrelated random numbers, an acceptable distribution is achieved by simple procedures. An improvement of the here applied algorithms would, for instance, include a more sophisticated sampling of the dephasing rates. Only one example of a control process is studied here and an application of the developed approach to other problems of quantum control is to be performed. This thesis established a systematic approach to understand quantum control in the presence of an environment.}, subject = {Quantenmechanisches System}, language = {en} } @phdthesis{Schuerger2024, author = {Sch{\"u}rger, Peter}, title = {Information-Theoretical Studies on Time-Dependent Quantum Systems}, doi = {10.25972/OPUS-35221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352215}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this thesis, we apply the information-theoretic approach in the context of quantum dynamics and wave packet motion: Information-theoretic measures are calculated from position and momentum densities, which are obtained from time-dependent quantum wave functions. The aim of this thesis is to benchmark, analyze and interpret these quantities and relate their features to the wave packet dynamics. Firstly, this is done for the harmonic oscillator (HO) with and without static disorder. In the unperturbed HO, the analytical study of coherent and squeezed states reveals time-dependent entropy expressions related to the localization of the wave function. In the disordered HO, entropies from classical and quantum dynamics are compared for short and long times. In the quantum case, imprints of wave packet revivals are found in the entropy. Then, the energy dependence of the entropy for very long times is discussed. Secondly, this is donefor correlated electron-nuclear motion. Here, entropies derived from the total, electronic and nuclear density, respectively, are calculated in position and momentum space for weak and strong adiabatic electronic coupling. The correlation between electron and nucleus is investigated using different correlation measures, where some of these functions are sensitive to the nodal structure of the wave function. An analytic ansatz to interpret the information-theoretical quantities is applied as well.}, subject = {St{\"o}rungstheorie}, language = {en} }