@phdthesis{Huemmert2020, author = {H{\"u}mmert, Martin W.}, title = {Untersuchung einer monomeren Mutante der extrazellul{\"a}r regulierten Kinase 2 (ERK2) bei kardialer Hypertrophie}, doi = {10.25972/OPUS-15564}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155644}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Die Raf-MEK-ERK1/2-Kaskade spielt eine wichtige Rolle in der Vermittlung von kardialer Hypertrophie und Zell{\"u}berleben. Durch unsere Arbeitsgruppe konnte im Vorfeld gezeigt werden, dass die Dimerisierung von ERK2 eine Voraussetzung f{\"u}r dessen Autophosphorylierung an Thr188 darstellt, welche wiederum f{\"u}r die {\"U}bermittlung der hypertrophen Effekten von ERK1/2 erforderlich ist. Im Rahmen dieser Arbeit wurde daraus abgeleitet die Fragestellung untersucht, ob mit Verhinderung der ERK2-Dimerisierung eine n{\"u}tzliche Strategie zur Inhibition von Hypertrophie vorliegt und welchen Einfluss diese auf das Zell{\"u}berleben hat. Die Auswirkungen der Dimerisierungsdefizienz von ERK2 wurden in neonatalen Kardiomyozyten der Ratte und in transgenen M{\"a}usen mithilfe einer ERK2-Mutante untersucht, der einige Aminos{\"a}uren in der ERK-ERK-Interaktionsfl{\"a}che fehlen und daher keine Dimere bilden kann (ERK2Δ174-177). Eine {\"U}berexpression von ERK2Δ174-177 in neonatalen Kardiomyozyten verringerte signifikant die Antwort auf hypertrophe Stimuli (Phenylephrin, Endothelin 1). Im Anschluss daran wurden die Effekte der Dimerisierungsdefizienz von ERK2 in vivo an transgenen M{\"a}usen mit kardialer {\"U}berexpression von ERK2Δ174-177 erforscht. Diese M{\"a}use zeigten unter basalen Bedingungen keine Unterschiede gegen{\"u}ber Wildtyp-M{\"a}usen hinsichtlich Kardiomyozytengr{\"o}ße, Ventrikelwanddicke und kardialer Funktion. Unter chronischer Druckbelastung mittels TAC ließ sich hingegen ein signifikant vermindertes Ausmaß an Hypertrophie im Vergleich zu Wildtyp quantifizieren. Da der ERK1/2-Signalweg auch am {\"U}berleben von Kardiomyozyten beteiligt ist, wurde die Apoptose an histologischen Schnitten von Mausherzen analysiert. Interessanterweise fand sich bei Herzen, die das dimerisierungsdefiziente ERK2-Protein {\"u}berexprimierten, eine mit Wildtyp vergleichbare Anzahl TUNEL-positiver Zellen. Ein {\"a}hnliches Ergebnis konnte bei der Messung des Fibrosegrades an Sirius-Rot gef{\"a}rbten histologischen Schnitten beobachtet werden. Zuletzt wurden die Folgen der ERK2-Dimerisierungsdefizienz auf physiologische Hypertrophie mit einem Laufrad-Versuchsaufbau evaluiert. Transgene ERK2Δ174-177- und Wildtyp-M{\"a}use zeigten unter diesem physiologischen Stimulus keine Unterschiede im Hinblick auf die Zunahme an kardialer Hypertrophie. Da die Dimerisierungsdefizienz von ERK2 zu einer reduzierten pathologischen Hypertrophie, ohne negative Auswirkungen auf ERK1/2-vermittelte anti-apoptotische Effekte noch auf kardiale Funktion oder physiologische Hypertrophieprozesse f{\"u}hrt, stellt die Hemmung der ERK-Dimerisierung ein attraktives Ziel zur Therapie pathologischer Hypertrophie sowie potentiell auch anderer auf den ERK1/2-Signalweg basierenden Krankheiten dar.}, subject = {ERK2d4}, language = {de} } @phdthesis{OlivaresBaerwald2020, author = {Olivares-Baerwald, Silvana}, title = {Die Rolle von Calcineurin im Nukleus von Kardiomyozyten und ein innovativer Inhibitor als neuer therapeutischer Ansatz bei kardialer Hypertrophie}, doi = {10.25972/OPUS-20808}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208080}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Die Calcineurin/NFAT-Signalkaskade spielt eine wichtige Rolle bei der Entwicklung einer kardialen Hypertrophie. Im Zytoplasma von Kardiomyozyten wird die Phosphatase Calcineurin nach Stimulierung der Zellen, z. B. durch Dehnungsreize, Angiotensin II (Ang II) oder Endothelin I (ET-1), und einen daraus folgenden intrazellul{\"a}ren Ca2+-Strom aktiviert. Dies f{\"u}hrt zur Dephosphorylierung von NFAT und zu dessen nukle{\"a}rer Translokation. In fr{\"u}heren Arbeiten von Ritter et al. wurden sowohl eine nukle{\"a}re Lokalisationssequenz (NLS) als auch eine nukle{\"a}re Exportsequenz (NES) innerhalb von Calcineurin identifiziert, die den Transport von Calcineurin zwischen dem Zytoplasma und dem Nukleus erm{\"o}glichen. Basierend auf diesen Ergebnissen wurde das Import Blocking Peptid (IBP) entwickelt. Dieses Peptid entspricht der NLS von Calcineurin und blockiert die Calcineurin-Bindungsstellen des Shuttleproteins (Karyopherins) Importin β1. So wird die Translokation von Calcineurin in den Nukleus unterbunden und die Signalkaskade zur Aktivierung von Hypertrophie-Genen in Kardiomyozyten unterbrochen. Dabei blieb die Phosphatase-Aktivit{\"a}t von Calcineurin unbeeinflusst. Eines der Ziele dieser Arbeit war, IBP weiter zu optimieren und den „proof of principle" auch in vivo zu f{\"u}hren. Hierf{\"u}r wurden u. a. ein geeignetes L{\"o}sungsmittel bestimmt (biokompatibel und an die Peptidcharakteristika angepasst), die Peptidstruktur modifiziert (Erh{\"o}hung der Spezifit{\"a}t/Wirksamkeit) und die erforderliche Dosis weiter eingegrenzt (Belastungs- und Kostenreduktion). Unter Verwendung einer TAMRA-markierten Wirkstoffvariante konnten der Weg des Peptids in M{\"a}usen nachverfolgt und die Ausscheidung quantifiziert werden. Aufbauend auf den Ergebnissen von Burkard et al., die die Entstehung einer konstitutiv-aktiven und nukle{\"a}ren Calcineurin-Isoform nach proteolytischer Spaltung durch Calpain nachwiesen, wurde die Rolle von Calcineurin im Zellkern genauer untersucht. Außerdem sollte die Frage beantwortet werden, wie ({\"u}ber Calcineurin?) die Herzmuskelzelle zwischen Calciumschwankungen im Zuge der Exzitations-Kontraktions-Kopplung (ECC) und vergleichsweise schwachen Calciumsignalen zur Transkriptionsteuerung unterscheidet. Mit Hilfe von nukle{\"a}ren Calcineurin-Mutanten, die einen Defekt in der Ca2+-Bindung aufwiesen, konnte die Bedeutung von Calcineurin als Calciumsensor f{\"u}r die NFAT-abh{\"a}ngige Transkription nachgewiesen werden. Im Mausmodell waren unter Hypertrophie-Bedingungen die Ca2+-Transienten in der nukle{\"a}ren Mikrodom{\"a}ne signifikant st{\"a}rker als im Zytosol, wodurch die Hypothese, dass die Aktivierung der Calcineurin/NFAT-Signalkaskade unabh{\"a}ngig von zytosolischem Ca2+ erfolgt, gest{\"u}tzt wird. Messungen von nukle{\"a}ren und zytosolischen Ca2+-Transienten in IP3-Sponge-M{\"a}usen zeigten im Vergleich zu Wildtyp-M{\"a}usen keine Erh{\"o}hung des Ca2+-Spiegels w{\"a}hrend der Diastole, was auf eine Rolle von Inositoltrisphosphat (IP3) in der Signalkaskade deutet. Außerdem zeigten isolierte Zellkerne ventrikul{\"a}rer adulter Kardiomyozyten eine erh{\"o}hte Expression des IP3-Rezeptors 2 (IP3R2) nach Ang II-Stimulierung. Diese gesteigerte Expression war abh{\"a}ngig von der Calcineurin/NFAT-Kaskade und bestand sogar 3 Wochen nach Entfernung des Ang II-Stimulus fort. Zusammenfassend l{\"a}sst sich sagen, dass nukle{\"a}res Calcineurin als ein Ca2+-Sensor agiert, dass die lokale Ca2+-Freisetzung im Kern {\"u}ber IP3-Rezeptoren detektiert wird und dass dies im Zusammenspiel mit NFAT die Transkription von Hypertrophiegenen initiiert.}, subject = {kardiale Hypertrophie}, language = {de} } @phdthesis{Michel2020, author = {Michel, Konstanze}, title = {Die kardiale Bedeutung des Hormons C-Typ natriuretisches Peptid (CNP) und dessen Guanylylcyclase B (GC-B) Rezeptor}, doi = {10.25972/OPUS-20021}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200211}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In der vorliegenden Dissertationsarbeit wurden die kardialen Effekte des C-Typ natriuretischen Peptids (CNP) an wildtypischen M{\"a}usen (Studie 1) und an einem neuen genetischen Mausmodell, mit einer Kardiomyozyten-spezifischen Deletion des Guanylyl-Cyclase B (GC-B) Rezeptors (Studie 2) untersucht. In Studie 1 wurden die Wirkungen von exogenem, synthetischem CNP auf eine durch Druckbelastung-induzierte Herzinsuffizienz in wildtypischen M{\"a}usen (C57Bl6 Hintergrund) untersucht. Daf{\"u}r wurde CNP parallel zu einer operativen transversen Aortenkonstriktion (TAC) {\"u}ber osmotische Minipumpen in einer Dosierung von 50 ng/kg/min {\"u}ber 14 Tage appliziert. Die 14 Tage TAC f{\"u}hrten zu einer ausgepr{\"a}gten Linksherzhypertrophie. Diese wurde durch exogenes CNP auf zellul{\"a}rer (verringerte Kardiomyozytenfl{\"a}chen) und molekularer (verringerte BNP mRNA Expression) Ebene signifikant gehemmt. Auch die durch TAC-induzierte linksventrikul{\"a}re Dilatation wurde durch exogenes CNP fast vollst{\"a}ndig verhindert. Diese kardialen protektiven Effekte von CNP traten ohne eine wesentliche Ver{\"a}nderung des arteriellen Blutdrucks auf. M{\"o}gliche mechanistische Ursachen f{\"u}r die sch{\"u}tzende Wirkung von CNP k{\"o}nnte die PKG-abh{\"a}ngige Phosphorylierung des sarkomerischen Proteins Titin sein. Eine gesteigerte Phosphorylierung von Titin an der elastischen N2B-Dom{\"a}ne verringert die Steifigkeit der Kardiomyozyten und verbessert somit deren Relaxationsf{\"a}higkeit (Hudson 2011). Die erh{\"o}hten linksventrikul{\"a}ren Volumina nach TAC (end-diastolische und end-systolische Volumina) wurden m{\"o}glicherweise durch eine erh{\"o}hte Steifigkeit der Kardiomyozyten provoziert. Dies k{\"o}nnte durch den akuten IL-6 mRNA Anstieg nach TAC beg{\"u}nstigt werden, da Kruger et al. einen Zusammenhang zwischen passiver Steifigkeit der Kardiomyozyten und IL-6-Expression postulierten (Kotter 2016, Kruger 2009). Diese Ver{\"a}nderungen wurden durch exogenes CNP verhindert. Es ist wahrscheinlich, dass die CNP-induzierte Phosphorylierung von Titin an Serin 4080 in die Relaxationsf{\"a}higkeit der Kardiomyozyten und somit die diastolische Funktion des linken Ventrikels verbesserte. Aufgrund dieser Beobachtungen wurde in Studie 2 untersucht, ob auch endogenes CNP als parakrines Hormon im Herzen eine TAC-induzierte Herzhypertrophie und die kontraktile Funktion von Kardiomyozyten bei einer hypertensiven Herzerkrankung beeinflussen kann. Daf{\"u}r wurde ein neues genetisches Mausmodell mit einer Kardiomyozyten-spezifischen Deletion des GC-B Rezeptors generiert (CM GC-B KO). Da vorangegangene Studien in unserer Arbeitsgruppe zeigten, dass die basale CNP-Expression im Herzen sehr gering ist, nach 3-t{\"a}giger TAC aber akut ansteigt und nach 14-t{\"a}giger TAC wieder abf{\"a}llt, haben wir CM GC-B KO M{\"a}use und deren Geschwister-Kontrolltiere an beiden Zeitpunkten nach TAC untersucht. Die TAC f{\"u}hrte Genotyp-unabh{\"a}ngig zu einem Anstieg der kardialen Nachlast nach 3 Tagen und weiter nach 14 Tagen. Diese Druckbelastung provozierte eine progressive, signifikante Linksherzhypertrophie. Allerdings reagierten die CM GC-B KO M{\"a}use im Vergleich zu den Kontrolltieren bereits nach 3-t{\"a}giger TAC mit einer ausgepr{\"a}gten Kardiomyozyten-Hypertrophie. Zudem beobachteten wir nach 3-t{\"a}giger TAC in den Knockout-M{\"a}usen eine Abnahme der Ejektionsfraktion und gleichzeitig eine signifikante Zunahme der beiden linksventrikul{\"a}ren Volumina (end-diastolische und end-systolische Volumen). Diese fr{\"u}he linksventrikul{\"a}re Dilatation wurde in den Kontrolltieren nicht beobachtet. Daraus schlussfolgerten wir, dass endogenes kardiales CNP, dessen Expression zu fr{\"u}hen Zeitpunkten nach Druckbelastung ansteigt, das Herz vor kontraktiler Dysfunktion und Dilatation sch{\"u}tzen kann. Um m{\"o}gliche Mechanismen f{\"u}r die protektive Wirkung von endogenem CNP zu erkl{\"a}ren, untersuchten wir die IL-6 mRNA Expression sowie die Titin-Phosphorylierung im Herzen. Der akute Anstieg der IL-6 mRNA Expression nach 3-t{\"a}giger TAC in den CM GC-B KO M{\"a}usen korreliert mit der verminderten Phosphorylierung von Titin an der PGK-spezifischen Phosphorylierungsstelle (Serin 4080). Somit k{\"o}nnte der CNP/GC-B/cGMP-Signalweg zu einer Inhibition pro-inflammatorischer Gene beitragen, da der akute IL-6 mRNA Anstieg in den Kontrollen nicht beobachtet wurde. Auch die gesteigerte NOX4 Expression 3 Tage nach TAC, k{\"o}nnte zu der fr{\"u}hen dilatativen Kardiomyopathie in den Knockout-M{\"a}usen beigetragen haben. Die verringerte STAT3 Aktivierung in den CM GC-B KO M{\"a}usen w{\"u}rde laut Literatur zu vermehrter Apoptose f{\"u}hren, indem pro-apoptotische Gene wie Bcl oder Bax vermehrt transkribiert werden. Auch die erh{\"o}hte Cxcl-1 mRNA Expression in den Knockout-M{\"a}usen deutet zusammen mit dem IL-6 Anstieg auf vermehrte Entz{\"u}ndungsreaktionen 3 Tage nach TAC hin. Zusammengenommen deuten die Ergebnisse dieser Dissertationsarbeit darauf hin, dass der CNP/GC-B/cGMP-Signalweg in fr{\"u}hen Stadien einer erh{\"o}hten kardialen Druckbelastung und der Entstehung einer dilatativen Kardiomyopathie entgegenwirken kann. Die Phosphorylierung des sarkomerischen Proteins Titin und die Hemmung der Expression pro-inflammatorischer Zytokine (speziell IL-6) k{\"o}nnten zu diesem protektiven Effekt beitragen.}, subject = {Herzinsuffizienz}, language = {de} } @phdthesis{Nething2002, author = {Nething, Katja}, title = {Beteiligung der Plasmamembran Ca2+-ATPase an Wachstumsregulation und Signaltransduktion im {\"U}berexpressionsmodell und im Myokard transgener Ratten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7498}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Einleitung: Die Plasmamembran Ca2+-ATPase (PMCA) ist ein ubiquit{\"a}r in eukaryonten Zellen vorkommendes Enzym, das Kalziumionen aus der Zelle transportiert. In Myokardzellen ist ihre Funktion trotz eingehender biochemischer Charakterisierung unklar. Die fr{\"u}here Hypothese einer Zust{\"a}ndigkeit f{\"u}r die Feinabstimmung der [Ca2+]iz wurde in neuerer Zeit erg{\"a}nzt durch die vermutete Rolle der PMCA in der Regulation von Zellparametern wie Proliferation, Differenzierung und Apoptose. Unterst{\"u}tzt wird dies durch die Lokalisation der ATPase in Caveolae, spezifischen Membraninvaginationen, in denen wichtige Zentren der zellul{\"a}ren Signalverarbeitung gesehen werden. Ziel: Mit der vorliegenden Arbeit sollte die Funktion der Plasmamembran Ca2+-ATPase, insbesondere eine m{\"o}gliche Beteiligung des Enzyms an der {\"U}bermittlung zellul{\"a}rer Signale im Rahmen von Apoptose und Wachstum, weiter aufgekl{\"a}rt werden. Methoden: Die Experimente zur Apoptose in dUTP-nick-end-labeling (TUNEL)-Technik wurden zum einen an einer Myoblastenlinie, zum anderen an transgenen Ratten mit hPMCA 4CI-{\"U}berexpression durchgef{\"u}hrt. Die Proteinsyntheseraten neonataler Kardiomyozyten wildtypischer bzw. {\"u}berexprimierender Tiere mittels 3H-Leucin-Inkorporation in Ruhe und unter Stimulation mit hypertrophieinduzierenden Substanzen wurden verglichen. Erg{\"a}nzend zu diesen funktionellen Versuchen fanden Immunfluoreszenzanalysen an neonatalen Kardiomyozyten der hPMCA 4CI-{\"u}berexprimierenden Rattenlinie 1142 statt. Ergebnisse: In der L6-Myoblastenlinie beeinflußte die {\"U}berexpression der Plasmamembran Ca2+-ATPase die Apoptose nicht, ebenso in ruhenden neonatalen Kardiomyozyten. Phenylephrin und Isoproterenol steigerten die Syntheseaktivit{\"a}t in den {\"u}berexprimierenden Herzmuskelzellen signifikant gegen{\"u}ber Wildtypkontrollen. NOS-Inhibition mit L-NAME induzierte in den neonatalen Kardiomyozyten Hypertrophie. Die Kombination von L-NAME und Isoproterenol ergab in beiden Zellgruppen gegen{\"u}ber dem Einzelstimulus verdoppelte Proteinsyntheseraten, wobei die Myozyten der Linie 1142 signifikant st{\"a}rker ansprachen. Zusammenfassung: {\"U}berexpression der Plasmamembran Ca2+-ATPase moduliert myozyt{\"a}res Wachstum, wobei ein Einfluß auf den b-adrenergen und NO Signalweg vorliegt. Die mittels Immunfluoreszenz nachgewiesene Lokalisation der PMCA in Caveolae l{\"a}ßt eine Interaktion des Enzyms mit anderen Signaltransduktionsmolek{\"u}len in diesen Subkompartimenten vermuten.}, language = {de} }