@article{RamachandranShearerJacobetal.2012, author = {Ramachandran, Vinoy K. and Shearer, Neil and Jacob, Jobin J. and Sharma, Cynthia M. and Thompson, Arthur}, title = {The architecture and ppGpp-dependent expression of the primary transcriptome of Salmonella Typhimurium during invasion gene expression}, series = {BMC Genomics}, volume = {13}, journal = {BMC Genomics}, number = {25}, doi = {10.1186/1471-2164-13-25}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130625}, year = {2012}, abstract = {Background: Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium (S. Typhimurium) requires expression of the extracellular virulence gene expression programme (STEX), activation of which is dependent on the signalling molecule guanosine tetraphosphate (ppGpp). Recently, next-generation transcriptomics (RNA-seq) has revealed the unexpected complexity of bacterial transcriptomes and in this report we use differential RNA sequencing (dRNA-seq) to define the high-resolution transcriptomic architecture of wildtype S. Typhimurium and a ppGpp null strain under growth conditions which model STEX. In doing so we show that ppGpp plays a much wider role in regulating the S. Typhimurium STEX primary transcriptome than previously recognised. Results: Here we report the precise mapping of transcriptional start sites (TSSs) for 78\% of the S. Typhimurium open reading frames (ORFs). The TSS mapping enabled a genome-wide promoter analysis resulting in the prediction of 169 alternative sigma factor binding sites, and the prediction of the structure of 625 operons. We also report the discovery of 55 new candidate small RNAs (sRNAs) and 302 candidate antisense RNAs (asRNAs). We discovered 32 ppGpp-dependent alternative TSSs and determined the extent and level of ppGpp-dependent coding and non-coding transcription. We found that 34\% and 20\% of coding and non-coding RNA transcription respectively was ppGpp-dependent under these growth conditions, adding a further dimension to the role of this remarkable small regulatory molecule in enabling rapid adaptation to the infective environment. Conclusions: The transcriptional architecture of S. Typhimurium and finer definition of the key role ppGpp plays in regulating Salmonella coding and non-coding transcription should promote the understanding of gene regulation in this important food borne pathogen and act as a resource for future research.}, language = {en} } @article{SchmidtDenkWiegering2020, author = {Schmidt, Stefanie and Denk, Sarah and Wiegering, Armin}, title = {Targeting protein synthesis in colorectal cancer}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {5}, issn = {2072-6694}, doi = {10.3390/cancers12051298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206014}, year = {2020}, abstract = {Under physiological conditions, protein synthesis controls cell growth and survival and is strictly regulated. Deregulation of protein synthesis is a frequent event in cancer. The majority of mutations found in colorectal cancer (CRC), including alterations in the WNT pathway as well as activation of RAS/MAPK and PI3K/AKT and, subsequently, mTOR signaling, lead to deregulation of the translational machinery. Besides mutations in upstream signaling pathways, deregulation of global protein synthesis occurs through additional mechanisms including altered expression or activity of initiation and elongation factors (e.g., eIF4F, eIF2α/eIF2B, eEF2) as well as upregulation of components involved in ribosome biogenesis and factors that control the adaptation of translation in response to stress (e.g., GCN2). Therefore, influencing mechanisms that control mRNA translation may open a therapeutic window for CRC. Over the last decade, several potential therapeutic strategies targeting these alterations have been investigated and have shown promising results in cell lines, intestinal organoids, and mouse models. Despite these encouraging in vitro results, patients have not clinically benefited from those advances so far. In this review, we outline the mechanisms that lead to deregulated mRNA translation in CRC and highlight recent progress that has been made in developing therapeutic strategies that target these mechanisms for tumor therapy.}, language = {en} } @article{ScognamiglioCabezasWallscheidThieretal.2016, author = {Scognamiglio, Roberta and Cabezas-Wallscheid, Nina and Thier, Marc Christian and Altamura, Sandro and Reyes, Alejandro and Prendergast, {\´A}ine M. and Baumg{\"a}rtner, Daniel and Carnevalli, Larissa S. and Atzberger, Ann and Haas, Simon and von Paleske, Lisa and Boroviak, Thorsten and W{\"o}rsd{\"o}rfer, Philipp and Essers, Marieke A. G. and Kloz, Ulrich and Eisenman, Robert N. and Edenhofer, Frank and Bertone, Paul and Huber, Wolfgang and van der Hoeven, Franciscus and Smith, Austin and Trumpp, Andreas}, title = {Myc depletion induces a pluripotent dormant state mimicking diapause}, series = {Cell}, volume = {164}, journal = {Cell}, number = {4}, doi = {10.1016/j.cell.2015.12.033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190868}, pages = {668-680}, year = {2016}, abstract = {Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.}, language = {en} } @article{PfeifferGuglielmiDombertJablonkaetal.2014, author = {Pfeiffer-Guglielmi, Brigitte and Dombert, Benjamin and Jablonka, Sibylle and Hausherr, Vanessa and van Thriel, Christoph and Schobel, Nicole and Jansen, Ralf-Peter}, title = {Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons}, series = {BMC Neuroscience}, volume = {15}, journal = {BMC Neuroscience}, number = {70}, issn = {1471-2202}, doi = {10.1186/1471-2202-15-70}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116049}, year = {2014}, abstract = {Background: Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Results: Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. Conclusions: We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission.}, language = {en} }