@article{ZimniakKirschnerHilpertetal.2021, author = {Zimniak, Melissa and Kirschner, Luisa and Hilpert, Helen and Geiger, Nina and Danov, Olga and Oberwinkler, Heike and Steinke, Maria and Sewald, Katherina and Seibel, J{\"u}rgen and Bodem, Jochen}, title = {The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-85049-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259820}, pages = {5890}, year = {2021}, abstract = {To circumvent time-consuming clinical trials, testing whether existing drugs are effective inhibitors of SARS-CoV-2, has led to the discovery of Remdesivir. We decided to follow this path and screened approved medications "off-label" against SARS-CoV-2. Fluoxetine inhibited SARS-CoV-2 at a concentration of 0.8 mu g/ml significantly in these screenings, and the EC50 was determined with 387 ng/ml. Furthermore, Fluoxetine reduced viral infectivity in precision-cut human lung slices showing its activity in relevant human tissue targeted in severe infections. Fluoxetine treatment resulted in a decrease in viral protein expression. Fluoxetine is a racemate consisting of both stereoisomers, while the S-form is the dominant serotonin reuptake inhibitor. We found that both isomers show similar activity on the virus, indicating that the R-form might specifically be used for SARS-CoV-2 treatment. Fluoxetine inhibited neither Rabies virus, human respiratory syncytial virus replication nor the Human Herpesvirus 8 or Herpes simplex virus type 1 gene expression, indicating that it acts virus-specific. Moreover, since it is known that Fluoxetine inhibits cytokine release, we see the role of Fluoxetine in the treatment of SARS-CoV-2 infected patients of risk groups.}, language = {en} } @article{GeigerKerstingSchlegeletal.2022, author = {Geiger, Nina and Kersting, Louise and Schlegel, Jan and Stelz, Linda and F{\"a}hr, Sofie and Diesendorf, Viktoria and Roll, Valeria and Sostmann, Marie and K{\"o}nig, Eva-Maria and Reinhard, Sebastian and Brenner, Daniela and Schneider-Schaulies, Sibylle and Sauer, Markus and Seibel, J{\"u}rgen and Bodem, Jochen}, title = {The acid ceramidase is a SARS-CoV-2 host factor}, series = {Cells}, volume = {11}, journal = {Cells}, number = {16}, issn = {2073-4409}, doi = {10.3390/cells11162532}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286105}, year = {2022}, abstract = {SARS-CoV-2 variants such as the delta or omicron variants, with higher transmission rates, accelerated the global COVID-19 pandemic. Thus, novel therapeutic strategies need to be deployed. The inhibition of acid sphingomyelinase (ASM), interfering with viral entry by fluoxetine was reported. Here, we described the acid ceramidase as an additional target of fluoxetine. To discover these effects, we synthesized an ASM-independent fluoxetine derivative, AKS466. High-resolution SARS-CoV-2-RNA FISH and RTqPCR analyses demonstrate that AKS466 down-regulates viral gene expression. It is shown that SARS-CoV-2 deacidifies the lysosomal pH using the ORF3 protein. However, treatment with AKS488 or fluoxetine lowers the lysosomal pH. Our biochemical results show that AKS466 localizes to the endo-lysosomal replication compartments of infected cells, and demonstrate the enrichment of the viral genomic, minus-stranded RNA and mRNAs there. Both fluoxetine and AKS466 inhibit the acid ceramidase activity, cause endo-lysosomal ceramide elevation, and interfere with viral replication. Furthermore, Ceranib-2, a specific acid ceramidase inhibitor, reduces SARS-CoV-2 replication and, most importantly, the exogenous supplementation of C6-ceramide interferes with viral replication. These results support the hypotheses that the acid ceramidase is a SARS-CoV-2 host factor.}, language = {en} } @phdthesis{Seitz2023, author = {Seitz, Florian}, title = {Synthesis, enzymatic recognition and antiviral properties of modified purine nucleosides}, doi = {10.25972/OPUS-31323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313238}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Beyond the four canonical nucleosides as primary building blocks of RNA, posttranscriptional modifications give rise to the epitranscriptome as a second layer of genetic information. In eukaryotic mRNA, the most abundant posttranscriptional modification is N6-methyladenosine (m6A), which is involved in the regulation of cellular processes. Throughout this thesis, the concept of atomic mutagenesis was employed to gain novel mechanistic insights into the substrate recognition by human m6A reader proteins as well as in the oxidative m6A demethylation by human demethylase enzymes. Non-natural m6A atomic mutants featuring distinct steric and electronic properties were synthesized and incorporated into RNA oligonucleotides. Fluorescence anisotropy measurements using these modified oligonucleotides revealed the impact of the atomic mutagenesis on the molecular recognition by the human m6A readers YTHDF2, YTHDC1 and YTHDC2 and allowed to draw conclusions about structural prerequisites for substrate recognition. Furthermore, substrate recognition and demethylation mechanism of the human m6A demethylase enzymes FTO and ALKBH5 were analyzed by HPLC-MS and PAGE-based assays using the modified oligonucleotides synthesized in this work. Modified nucleosides not only expand the genetic alphabet, but are also extensively researched as drug candidates. In this thesis, the antiviral mechanism of the anti-SARS-CoV-2 drug remdesivir was investigated, which causes delayed stalling of the viral RNA-dependent RNA polymerase (RdRp). Novel remdesivir phosphoramidite building blocks were synthesized and used to construct defined RNA-RdRp complexes for subsequent studies by cryogenic electron microscopy (cryo-EM). It was found that the 1'-cyano substituent causes Rem to act as a steric barrier of RdRp translocation. Since this translocation barrier can eventually be overcome by the polymerase, novel derivatives of Rem with potentially improved antiviral properties were designed.}, subject = {Nucleins{\"a}uren}, language = {en} } @phdthesis{Stiller2023, author = {Stiller, Carina}, title = {Synthesis and applications of modified nucleosides and RNA nucleotides}, doi = {10.25972/OPUS-31135}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311350}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {As central components of life, DNA and RNA encode the genetic information. However, RNA performs several functions that exceed the competences stated in the 'central dogma of life'. RNAs undergo extensive post-transcriptional processing like chemical modifications. Among all classes of RNA, tRNAs are the most extensively modified. Their modifications are chemically diverse and vary from simple methylations (e.g. m3C, m6A) to more complex residues, like isopentenyl group (e.g. i6A, hypermodifications: e.g. ms2i6A) or even amino acids (e.g. t6A). Depending on their location within the overall structure, modifications can have an impact on tRNA stability and structure, as well as affinity for the ribosome and translation efficiency and fidelity. Given the importance of tRNA modifications new tools are needed for their detection and to study their recognition by proteins and enzymatic transformations. The chemical synthesis of these naturally occurring tRNA modifications as phosphoramidite building blocks is a prerequisite to incorporate the desired modification via solid-phase synthesis into oligonucleotides. With the help of the m3C, (ms2)i6A, and t6A oligonucleotides, the importance and impact of tRNA modifications was investigated in this thesis. To this end, the role of METTL8 as the methyltransferase responsible for the installation of the methyl group at C32 for mt-tRNAThr and mt-tRNASer(UCN) was resolved. Thereby, the respective adenosine modification on position 37 is essential for the effectiveness of the enzyme. Besides, by means of NMR analysis, CD spectroscopy, thermal denaturation experiments, and native page separation, the impact of m3C32 on the structure of the tRNA ASLs was shown. The modification appeared to fine-tune the tRNA structure to optimize mitochondrial translation. To investigate the regulation of the dynamic modification pathway of m3C, demethylation assays were performed with the modified tRNA-ASLs and the (α-KG)- and Fe(II)-dependent dioxygenase ALKBH1 and ALKHB3. A demethylation activity of ALKBH3 on the mt-tRNAs was observed, even though it has so far only been described as a cytoplasmic enzyme. Whether this is physiologically relevant and ALKBH3 present a mitochondrial localization needs further validation. In addition, ALKBH1 was confirmed to not be able to demethylate m3C on mt-tRNAs, but indications for a deprenylation and exonuclease activity were found. Furthermore, the aforementioned naturally occurring modifications were utilized to find analytical tools that can determine the modification levels by DNAzymes, which cleave RNA in the presence of a specific modification. Selective DNA enzymes for i6A, as well as the three cytidine isomers m3C, m4C, and m5C have been identified and characterized. Besides the naturally occurring tRNA modifications, the investigation on artificially modified nucleosides is also part of this thesis. Nucleosides with specific properties for desired applications can be created by modifying the scaffold of native nucleosides. During the pandemic, the potential of antiviral nucleoside analogues was highlighted for the treatment of the SARS-CoV-2 infection. For examinations of the potential drug-candidate Molnupiravir, the N4-hydroxycytidine phosphoramidite building block was synthesized and incorporated into several RNA oligonucleotides. A two-step model for the NHC-induced mutagenesis of SARS-CoV-2 was proposed based on RNA elongation, thermal denaturation, and cryo-EM experiments using the modified RNA strands with the recombinant SARS-CoV-2 RNA-dependent RNA polymerase. Two tautomeric forms of NHC enable base pairing with guanosine in the amino and with adenosine in the imino form, leading to error catastrophe after the incorporation into viral RNA. These findings were further corroborated by thermal melting curve analysis and NMR spectroscopy of the NHC-containing Dickerson Drew sequence. In conclusion, the anti-amino form in the NHC-G base pair was assigned by NMR analysis using a 15N-labeld NHC building block incorporated into the Dickerson Drew sequence. This thesis also addressed the synthesis of a 7-deazaguanosine crosslinker with a masked aldehyde as a diol linker for investigations of DNA-protein interactions. The diol functional group can be unmasked to release the reactive aldehyde, which can specifically form a covalent bond with amino acids Lys or Arg within the protein complex condensin. The incorporation of the synthesized phosphoramidite and triphosphate building blocks were shown and the functionality of the PCR product containing the crosslinker was demonstrated by oxidation and the formation of a covalent bond with a fluorescein label. The development of assays that detect changes in this methylation pattern of m6A could provide new insights into important biological processes. In the last project of this thesis, the influence of RNA methylation states on the structural properties of RNA was analyzed and a fluorescent nucleoside analog (8-vinyladenosine) as molecular tools for such assays was developed. Initial experiments with the fluorescent nucleoside analog N6-methyl-8-vinyladenosine (m6v8A) were performed and revealed a strong fluorescence enhancement of the free m6v8A nucleoside by the installation of the vinyl moiety at position 8. Overall, this thesis contributes to various research topics regarding the application of naturally occurring and artificial nucleoside analogues. Starting with the chemical synthesis of RNA and DNA modifications, this thesis has unveiled several open questions regarding the dynamic (de-)methylation pathway of m3C and the mechanism of action of molnupiravir through in-depth analysis and provided the basis for further investigations of the protein complex condensin, and a new fluorescent nucleoside analog m6v8A.}, subject = {Nucleins{\"a}uren}, language = {en} } @article{FlemmingHankirErnestusetal.2020, author = {Flemming, S. and Hankir, M. and Ernestus, R.-I. and Seyfried, F. and Germer, C.-T. and Meybohm, P. and Wurmb, T. and Vogel, U. and Wiegering, A.}, title = {Surgery in times of COVID-19 — recommendations for hospital and patient management}, series = {Langenbeck's Archives of Surgery}, volume = {405}, journal = {Langenbeck's Archives of Surgery}, issn = {1435-2443}, doi = {10.1007/s00423-020-01888-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231766}, pages = {359-364}, year = {2020}, abstract = {Background The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), has escalated rapidly to a global pandemic stretching healthcare systems worldwide to their limits. Surgeonshave had to immediately react to this unprecedented clinical challenge by systematically repurposing surgical wards. Purpose To provide a detailed set of guidelines developed in a surgical ward at University Hospital Wuerzburg to safelyaccommodate the exponentially rising cases of SARS-CoV-2 infected patients without compromising the care of emergencysurgery and oncological patients or jeopardizing the well-being of hospital staff. Conclusions The dynamic prioritization of SARS-CoV-2 infected and surgical patient groups is key to preserving life whilemaintaining high surgical standards. Strictly segregating patient groups in emergency rooms, non-intensive care wards andoperating areas prevents viral spread while adequately training and carefully selecting hospital staff allow them to confidentlyand successfully undertake their respective clinical duties.}, language = {en} } @phdthesis{Graf2022, author = {Graf, Dominic}, title = {Surface and active site modification of proteins with organometallic markers and inhibitors}, doi = {10.25972/OPUS-28742}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {After implementing a reliable mass spectrometry based kinetic study the indole conjugation with different organometallic indoles led to questions about the electronical and sterical influences on reactivity. The substitution pattern of the ferrocene functionalized indoles at the six-membered ring determines the electron density on the C3 atom, which reacts with the formed Schiff base. Since the experimental results showed the exact opposite trend, covalent docking studies were performed elucidating the importance of surface interactions. These studies were in harmony with the experimental results and determined lysine 33 as most preferable conjugation site as well as substitution in 6-position as most favourable pattern. The amine motif in compounds 6, 7 and 8 proofed to be easily fragmented by the ESI method used. The amide linker in 10 remains intact but shows a lower conversion. Those two inherent characteristics are however preferable for well-defined and site-specific bioconjugation. The synthesis and evaluation of piano stool complex derivatives with manganese and rhenium metal centre 15, 16, 18 and 22 gave additional guidance by the interpretation of applicable structural motifs. The electron-withdrawing carbonyl groups lead to the hindrance of fulvene formation and thus to no fragmentation as seen with the ferrocene group. The total conversion is low compared to 8, only 22 shows a good enough conversion to mainly monoconjugate of 45\% and a possible radio-labelling application as 99mTc analogue. As consequence manganese complexes with a stable facial tricarbonyl unit and a tridentate chelator with 4-, 5- and 6-substituted aminomethylindole conjugated through an amide bond were synthesized and consecutively evaluated. The resulting organometallic indole derivatives 29, 30 and 31 all showed a total conversion around 40\% similar to 16, but at the same time a rate constant in the range of 10-4 s-1 like the organic indole. Besides the similar conversion, the rate constants followed the trend of the 6-substituted derivative as fastest and then 5- and 4- substituted derivative with decreasing reactivity. For underlining the usage as technetium label for the best out of the series 31, a rhenium analogue was prepared. The resulting compound 32 was especially interesting, because the conversion was even higher than the 70\% of 8 with a total of 88\%. Additionally, the rate constant was a tenfold higher as well. This rendered compound 32 as best possible 99mTc analogue for further application as radio-label. After the success of 32 and realizing the sterical benefits resulting from the flexible tridentate ligand-system, substitution at the five-membered ring was explored. The complexes 33, 34 and 35 are based on indole-2-carboxylic acid and with the difference of the length of the alkyl spacer between amide and complex to probe for the influence and sterical hindrance, but all three derivatives showed no conjugation which excludes functionalization in 2-position. As the C3 is used for the actual bioconjugation, the last possible derivatization was realized on the indole-N1 by using 1-(3-bromopropyl)indole as building block during the synthesis of the ligand-system. The corresponding manganese 36 and rhenium 37 complexes both showed similar properties of a moderate conversion like 22 and a rate constant in the range of 10-5 s-1. In conclusion the rhenium complex 32 with the 6-substitution pattern at the tridentate indole-bearing ligand remains the most promising structure. The here developed liquid chromatography coupled mass spectrometry-based assay for the determination of inhibitory activity of drug candidates against the 3CLpro of the sever acute respiratory syndrome coronavirus type 2 was successfully implemented and especially designed to give, due to the available absorption spectra and corresponding mass traces, further insight in the otherwise through fluorescence resonance energy transfer-based assays neglected influences on the inhibition results. Starting with a literature-known quinolone containing covalent inhibitor 42 an N1-methylated derivative 43 and their analogues 44 and 45 in which the benzoic acid was exchanged for ferrocene carboxylic acid were synthesized. The inhibition of 3CLpro was evaluated by the concentration of initial 15mer peptide left after incubation and for that purpose the for 280 nm defined molar attenuation coefficient of (26.41±0.59) L*mol-1*cm-1 determined and used. The results showed a reaction of DL dithiothreitol with the less stable benzoic acid esters leading to a moderate inhibitory effect. The methylation in N1-position showed an increase in stability. The methylated and with ferrocene carboxylic acid functionalized derivative showed a complete inhibition during the timeframe of the assay. In search of a fluorescent and therefore traceable inhibitor, 4 hydroxycoumarin was used to synthesize the analogue with benzoic acid 49 and ferrocene carboxylic acid 50. Both derivatives were less stable than their analogues but exhibited the same trend of a more stable ferrocene-derived compound, which exerted a higher inhibition as well. After preparing and testing the model thioester 53 and showing an inactivation of the established inhibitor ebselen, it was concluded that the reaction with DL dithiothreitol reduces the concentration of active intact inhibitor and therefore decreases the inhibition rate during the assay. The next step was proofing the reducing agent as non-essential for the fast assay conducted in a timeframe of 5 min to circumvent the negative influence of DL dithiothreitol. By excluding every inhibition-altering part, the resulting method is the perfect tool for precise statements in relation of inhibitory activity. Then the inhibition assay was repeated for ebselen and the best out of the here introduced organometallic inhibitors 45. Both give equivalent results of a complete inhibition during the measurement. The implemented liquid chromatography coupled mass spectrometry-based assay has many advantages over the fluorescence resonance energy transfer-based assays in which all the information and insight accumulated by the evaluation of uv/vis traces and mass spectra are not available leading to wrong or deviating results regarding the inhibitory capacity of inhibitor candidates.}, subject = {Inhibition}, language = {en} } @article{SchneiderSchauliesSchumacherWiggeretal.2021, author = {Schneider-Schaulies, Sibylle and Schumacher, Fabian and Wigger, Dominik and Sch{\"o}l, Marie and Waghmare, Trushnal and Schlegel, Jan and Seibel, J{\"u}rgen and Kleuser, Burkhard}, title = {Sphingolipids: effectors and Achilles heals in viral infections?}, series = {Cells}, volume = {10}, journal = {Cells}, number = {9}, issn = {2073-4409}, doi = {10.3390/cells10092175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245151}, year = {2021}, abstract = {As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention.}, language = {en} } @article{MeintrupBorgmannSeidletal.2021, author = {Meintrup, David and Borgmann, Stefan and Seidl, Karlheinz and Stecher, Melanie and Jakob, Carolin E. M. and Pilgram, Lisa and Spinner, Christoph D. and Rieg, Siegbert and Isberner, Nora and Hower, Martin and Vehreschild, Maria and G{\"o}pel, Siri and Hanses, Frank and Nowak-Machen, Martina}, title = {Specific risk factors for fatal outcome in critically ill COVID-19 patients: results from a European multicenter study}, series = {Journal of Clinical Medicine}, volume = {10}, journal = {Journal of Clinical Medicine}, number = {17}, issn = {2077-0383}, doi = {10.3390/jcm10173855}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245191}, year = {2021}, abstract = {(1) Background: The aim of our study was to identify specific risk factors for fatal outcome in critically ill COVID-19 patients. (2) Methods: Our data set consisted of 840 patients enclosed in the LEOSS registry. Using lasso regression for variable selection, a multifactorial logistic regression model was fitted to the response variable survival. Specific risk factors and their odds ratios were derived. A nomogram was developed as a graphical representation of the model. (3) Results: 14 variables were identified as independent factors contributing to the risk of death for critically ill COVID-19 patients: age (OR 1.08, CI 1.06-1.10), cardiovascular disease (OR 1.64, CI 1.06-2.55), pulmonary disease (OR 1.87, CI 1.16-3.03), baseline Statin treatment (0.54, CI 0.33-0.87), oxygen saturation (unit = 1\%, OR 0.94, CI 0.92-0.96), leukocytes (unit 1000/μL, OR 1.04, CI 1.01-1.07), lymphocytes (unit 100/μL, OR 0.96, CI 0.94-0.99), platelets (unit 100,000/μL, OR 0.70, CI 0.62-0.80), procalcitonin (unit ng/mL, OR 1.11, CI 1.05-1.18), kidney failure (OR 1.68, CI 1.05-2.70), congestive heart failure (OR 2.62, CI 1.11-6.21), severe liver failure (OR 4.93, CI 1.94-12.52), and a quick SOFA score of 3 (OR 1.78, CI 1.14-2.78). The nomogram graphically displays the importance of these 14 factors for mortality. (4) Conclusions: There are risk factors that are specific to the subpopulation of critically ill COVID-19 patients.}, language = {en} } @article{OsmanogluGuptaAlmasietal.2023, author = {Osmanoglu, {\"O}zge and Gupta, Shishir K. and Almasi, Anna and Yagci, Seray and Srivastava, Mugdha and Araujo, Gabriel H. M. and Nagy, Zoltan and Balkenhol, Johannes and Dandekar, Thomas}, title = {Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1285345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354158}, year = {2023}, abstract = {Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.}, language = {en} } @phdthesis{Reis2024, author = {Reis, Stefanie}, title = {Sicherheit und Wirksamkeit der halbtherapeutischen und therapeutischen Antikoagulation bei hospitalisierten Patientinnen und Patienten mit COVID-19: eine systematische {\"U}bersichtsarbeit und Meta-Analyse}, doi = {10.25972/OPUS-35960}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359607}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {COVID-19 Patientinnen und Patienten haben ein hohes thrombotisches Risiko. Die Sicherheit und Wirksamkeit verschiedener Antikoagulationsschemata bei COVID-19 Patientinnen und Patienten sind unklar. Acht RCTs mit 5580 Patientinnen und Patienten wurden identifiziert, wovon zwei RCTs Antikoagulation in halbtherapeutischer und sechs RCTs Antikoagulation in therapeutischer Dosierung mit der Standard Thromboembolieprophylaxe verglichen haben. Die halbtherapeutische Antikoagulation kann wenig oder gar keinen Einfluss auf thrombotische Ereignisse oder Todesf{\"a}lle haben (RR 1,03, 95\% KI 0,86-1,24), kann aber schwere Blutungen (RR 1,48, 95\% KI 0,53-4,15) bei mittelschweren bis schweren COVID-19 Patientinnen und Patienten verst{\"a}rken. Therapeutische Antikoagulation kann thrombotische Ereignisse oder den Tod bei Patientinnen und Patienten mit mittelschwerem COVID-19 (RR 0,64, 95\% KI 0,38-1,07) verringern, kann aber bei Patientinnen und Patienten mit schwerer Erkrankung (RR 0,98, 95\% KI 0,86-1,12) wenig oder keine Wirkung haben. Das Risiko schwerer Blutungen kann unabh{\"a}ngig vom Schweregrad der Erkrankung zunehmen (RR 1,78, 95\% KI 1,15-2,74). Die Evidenzsicherheit ist immer noch gering. M{\"a}ßig betroffene COVID-19 Patientinnen und Patienten k{\"o}nnen von einer therapeutischen Antikoagulation profitieren, jedoch ist das Blutungsrisiko erh{\"o}ht.}, subject = {Metaanalyse}, language = {de} }