@phdthesis{Lee1999, author = {Lee, Kyeong-Hee}, title = {Cofilin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1681}, school = {Universit{\"a}t W{\"u}rzburg}, year = {1999}, abstract = {This study has identified cofilin, an actin binding protein, as a control element in the reorganization of the actin cytoskeleton which is highly relevant for T lymphocyte activation. Cofilin is regulated in its activity by reversible phosphorylation which is inducible by stimulation through accessory receptors such as CD2 and CD28. First it could be demonstrated that accessory receptor triggering induces the transient association of cofilin with the actin cytoskeleton and that only the dephosphorylated form of cofilin possesses the capacity to bind cytoskeletal actin in vivo. PI3-kinase inhibitors block both the dephosphorylation of cofilin and its association with the actin cytoskeleton. Importantly, cofilin, actin, PI3-kinase and one of its substrates, namely phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) which can bind to cofilin, co-localize within CD2-receptor caps. The cofilin/F-actin interaction has been identified as a crucial regulatory element for receptor cap formation and the strength of signal transduction. To this end, appropriately designed cell permeable non-toxic peptides that are homologous to actin binding motifs of the human cofilin sequence were introduced into untransformed human peripheral blood T lymphocytes. These peptides competitively and dose dependently inhibit the activation induced interaction of cofilin with the actin cytoskeleton in vivo. By this approach it was possible to study, for the first time, the functional consequences of this interaction in immunocompetent T cells. The present data demonstrate that inhibition of the actin/cofilin interaction in human T lymphocytes by means of these cofilin derived peptides abolishes receptor cap formation and strongly modulates functional T cell responses such as T cell proliferation, interleukin-2 production, cell surface expression of CD69, gIFN production, and CD95L expression. Importantly, receptor independent activation by PMA and calcium ionophore circumvents these peptide produced inhibitory effects on lymphocyte stimulation and places the cofilin/actin interaction to a proximal step in the cascade of signaling events following T cell activation via surface signals. The present results are novel since as yet no information existed regarding the molecular elements which link cell surface receptor stimulation directly to the resulting reorganization of the actin cytoskeleton.}, subject = {T-Lymphozyt}, language = {en} } @phdthesis{Weiss2011, author = {Weiß, Sabine}, title = {Function of the Spir actin nucleators in intracellular vesicle transport processes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64589}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Spir proteins are the founding members of the novel class of WH2-actin nucleators. A C-terminal modified FYVE zinc finger motif is necessary to target Spir proteins towards intracellular membranes. The function and regulation of the Spir actin organizers at vesicular membranes is almost unknown. Live cell imaging analyses performed in this study show that Spir-2 is localized at tubular vesicles. Cytoplasmic Spir-2-associated vesicles branch and form protrusions, which can make contacts to the microtubule network, where the Spir-2 vesicles stretch and slide along the microtubule filaments. The analysis of living HeLa cells expressing eGFP-tagged Spir-2, Spir-2-ΔKIND and Spir-2-ΔKW (lacking the 4 WH2 domains and the KIND domain) showed Spir-2-associated tubular structures which differ in their length and motility. Throughout the course of that study it could be shown that the tail domain of the actin motor protein myosin Vb, as a force-generating molecule, is colocalizing and co-immunoprecipitating with Spir-2-ΔKW. By using the tail domain of myosin Vb as a dominant negative mutant for myosin Vb-dependent vesicle transport processes it could be shown that Spir-2-ΔKW/MyoVb-cc-tail- associated vesicles exhibit an increased elongation. Moreover, using the microtubule depolymerizing drug nocodazole it could be shown that the elongation and the motility of Spir-2-ΔKW-associated vesicles depends on an intact microtubule cytoskeleton. Motility and morphological dynamics of Spir-2-associated vesicles is therefore dependent on actin, actin motorproteins and microtubule filaments. These results propose a model in which myosin/F-actin forces mediate vesicle branching, allowing the vesicles to move to and in between the microtubule filaments and thereby providing a new degree of freedom in vesicular motility. To determine the exact subcellular localization of Spir-2, colocalization studies were performed. It could be shown that Spir-2 shows a partial colocalization to Rab11a-positive compartments. Furthermore, Spir-2 exhibits an almost identical localization to Arf1 and the Arf1 small G protein but not Rab11a could be immunoprecipitated with Spir-2-ΔKW. This suggests, that Arf1 recruits Spir-2 to Arf1/Rab11a-positive membranes. Another important function of the Spir-2 C-terminus is the membrane targeting by the FYVE domain. By performing a protein-lipid overlay assay, it has been shown that purified GST- and 6xHis-tagged Spir-2-ΔKW bind phosphatidic acid suggesting a mechanism in which Spir-2 is recruited to phosphatidic acid-enriched membranes. To further elucidate the mechanism in which Spir-2 membrane-targeting could be regulated, interaction studies of C-terminal parts of Spir-2 revealed that the Spir-2 proteins interact directly.}, subject = {Aktin}, language = {en} } @phdthesis{Hupp2012, author = {Hupp, Sabrina}, title = {Modulation of Actin Dynamics by the Cholesterol-Dependent Cytolysin Pneumolysin - a novel mechanism beyond pore formation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70889}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Streptococcus pneumoniae is one of the major causes of bacterial meningitis, which mainly affects young infants in the developing countries of Africa, Asia (esp. India) and South America, and which has case fatality rates up to 50\% in those regions. Bacterial meningitis comprises an infection of the meninges and the sub-meningeal cortex tissue of the brain, whereat the presence of pneumolysin (PLY), a major virulence factor of the pneumococcus, is prerequisite for the development of a severe outcome of the infection and associated tissue damage (e. g. apoptosis, brain edema, and ischemia). Pneumolysin belongs to the family of pore forming, cholesterol-dependent cytolysins (CDCs), bacterial protein toxins, which basically use membrane-cholesterol as receptor and oligomerize to big aggregates, which induce cell lysis and cell death by disturbance of membrane integrity. Multiple recent studies, including this work, have revealed a new picture of pneumolysin, whose cell-related properties go far beyond membrane binding, pore formation and the induction of cell death and inflammatory responses. For a long time, it has been known that bacteria harm the tissues of their hosts in order to promote their own survival and proliferation. Many bacterial toxins aim to rather hijack cells than to kill them, by interacting with cellular components, such as the cytoskeleton or other endogenous proteins. This study was able to uncover a novel capacity of pneumolysin to interact with components of the actin machinery and to promote rapid, actin-dependent cell shape changes in primary astrocytes. The toxin was applied in disease-relevant concentrations, which were verified to be sub-lytic. These amounts of toxin induced a rapid actin cortex collapse in horizontal direction towards the cell core, whereat membrane integrity was preserved, indicating an actin severing function of pneumolysin, and being consistent with cell shrinkage, displacement, and blebbing observed in live cell imaging experiments. In contrast to neuroblastoma cells, in which pneumolysin led to cytoskeleton remodeling and simultaneously to activation of Rac1 and RhoA, in primary astrocytes the cell shape changes were seen to be primarily independent of small GTPases. The level of activated Rac1 and RhoA did not increase at the early time points after toxin application, when the initial shape changes have been observed, but at later time points when the actin-dependent displacement of cells was slower and less severe, probably presenting the cell's attempt to re-establish proper cytoskeleton function. A GUV (giant unilamellar vesicle) approach provided insight into the effects of pneumolysin in a biomimetic system, an environment, which is strictly biochemical, but still comprises cellular components, limited to the factors of interest (actin, Arp2/3, ATP, and Mg2+ on one side, and PLY on the other side). This approach was able to show that the wildtype-toxin, but not the Δ6 mutant (mutated in the unfolding domain, and thus non-porous), had the capacity to exhibit its functions through a membrane bilayer, meaning it was able to aggregate actin, which was located on the other side of the membrane, either via direct interaction with actin or in an Arp2/3 activating manner. Taking a closer look at these two factors with the help of several different imaging and biochemical approaches, this work unveiled the capacity of pneumolysin to bind and interact both with actin and Arp2 of the Arp2/3 complex. Pneumolysin was capable to slightly stabilize actin in an actin-pyrene polymerization assay. The same experimental setup was applied to show that the toxin had the capacity to lead to actin polymerization through activation of the Arp2/3 complex. This effect was additionally confirmed with the help of fluorescent microscopy of rhodamine (TRITC)-tagged actin. Strongest Arp2/3 activation, and actin nucleation/polymerization is achieved by the VCA domain of the WASP family proteins. However, addition of PLY to the Arp2/3-VCA system led to an enhanced actin nucleation, suggesting a synergistic activation function of pneumolysin. Hence, two different effects of pneumolysin on the actin cytoskeleton were observed. On the one hand an actin severing property, and on the other hand an actin stabilization property, both of which do not necessarily exclude each other. Actin remodeling is a common feature of bacterial virulence strategies. This is the first time, however, that these properties were assigned to a toxin of the CDC family. Cytoskeletal dysfunction in astrocytes leads to dysfunction and unregulated movement of these cells, which, in context of bacterial meningitis, can favor bacterial penetration and spreading in the brain tissue, and thus comprises an additional role of pneumolysin as a virulence factor of Streptococcus pneumonia in the context of brain infection.}, subject = {Hirnhautentz{\"u}ndung}, language = {en} } @phdthesis{Moradi2017, author = {Moradi, Mehri}, title = {Differential roles of α-, β- and γ-actin isoforms in regulation of cytoskeletal dynamics and stability during axon elongation and collateral branch formation in motoneurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147453}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In highly polarized cells like neurons, cytoskeleton dynamics play a crucial role in establishing neuronal connections during development and are required for adult plasticity. Actin turnover is particularly important for neurite growth, axon path finding, branching and synaptogenesis. Motoneurons establish several thousand branches that innervate neuromuscular synapses (NMJs). Axonal branching and terminal arborization are fundamental events during the establishment of synapses in motor endplates. Branching process is triggered by the assembly of actin filaments along the axon shaft giving rise to filopodia formation. The unique contribution of the three actin isoforms, α-, β- and γ-actin, in filopodia stability and dynamics during this process is not well characterized. Here, we performed high resolution in situ hybridization and qRT-PCR and showed that in primary mouse motoneurons α-, β- and γ-actin isoforms are expressed and their transcripts are translocated into axons. Using FRAP experiments, we showed that transcripts for α-, β- and γ-actin become locally translated in axonal growth cones and translation hot spots of the axonal branch points. Using live cell imaging, we showed that shRNA depletion of α-actin reduces dynamics of axonal filopodia which correlates with reduced number of collateral branches and impairs axon elongation. Depletion of β-actin correlates with reduced dynamics of growth cone filopoida, disturbs axon elongation and impairs presynaptic differentiation. Also, depletion of γ-actin impairs axonal growth and decreases axonal filopodia dynamics. These findings implicate that actin isoforms accomplish unique functions during development of motor axons. Depletions of β- and γ-actin lead to compensatory upregulation of other two isoforms. Consistent with this, total actin levels remain unaltered and F-actin polymerization capacity is preserved. After the knockdown of either α- or γ-actin, the levels of β-actin increase in the G-actin pool indicating that polymerization and stability of β-actin filaments depend on α- or γ-actin. This study provides evidence both for unique and overlapping function of actin isoforms in motoneuron growth and differentiation. In the soma of developing motoneurons, actin isoforms act redundantly and thus could compensate for each other's loss. In the axon, α-, β- and γ-actin accomplish specific functions, i.e. β-actin regulates axon elongation and plasticity and α- and γ-actin regulate axonal branching. Furthermore, we show that both axonal transport and local translation of α-, β- and γ-actin isoforms are impaired in Smn knockout motoneurons, indicating a role for Smn protein in RNA granule assembly and local translation of these actin isoforms in primary mouse motoneurons.}, subject = {Motoneuron}, language = {en} } @phdthesis{Heck2019, author = {Heck, Johannes}, title = {Role of cyclase-associated protein 2 in platelet function and description of an inherited macrothrombocytopenia}, doi = {10.25972/OPUS-17996}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179968}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Cyclase-associated protein (CAP)2 is an evolutionarily highly conserved actin-binding protein implicated in striated muscle development, carcinogenesis, and wound healing in mammals. To date, the presence as well as the putative role(s) of CAP2 in platelets, however, remain unknown. Therefore, mice constitutively lacking CAP2 (Cap2gt/gt mice) were examined for platelet function. These studies confirmed the presence of both mammalian CAP isoforms, CAP1 and CAP2, in platelets. CAP2-deficient platelets were slightly larger than WT controls and displayed increased GPIIbIIIa activation and P-selectin recruitment in response to the (hem)ITAM-specific agonists collagen-related peptide and rhodocytin. However, spreading of CAP2-deficient platelets on a fibrinogen matrix was unaltered. In conclusion, the functionally redundant CAP1 isoform may compensate for the lack of CAP2 in murine platelets. Moreover, the studies presented in this thesis unveiled a severe macrothrombocytopenia that occurred independently of the targeted Cap2 allele and which was preliminarily termed orphan (orph). Crossing of the respective mice to C57BL/6J wild-type animals revealed an autosomal recessive inheritance. Orph mice were anemic and developed splenomegaly as well as BM fibrosis, suggesting a general hematopoietic defect. Strikingly, BM MKs of orph mice demonstrated an aberrant morphology and appeared to release platelets ectopically into the BM cavity, thus pointing to defective thrombopoiesis as cause for the low platelet counts. Orph platelets exhibited marked activation defects and spread poorly on fibrinogen. The unaltered protein content strongly suggested a defective alpha-granule release to account for the observed hyporesponsiveness. In addition, the cytoskeleton of orph platelets was characterized by disorganized microtubules and accumulations of filamentous actin. However, further experiments are required to elucidate the activation defects and cytoskeletal abnormalities in orph platelets. Above all, the gene mutation responsible for the phenotype of orph mice needs to be determined by next-generation sequencing in order to shed light on the underlying genetic and mechanistic cause.}, subject = {Thrombozyt}, language = {en} }