@article{HadiBankogluStopper2023, author = {Hadi, Naji Said Aboud and Bankoglu, Ezgi Eyluel and Stopper, Helga}, title = {Genotoxicity of pyrrolizidine alkaloids in metabolically inactive human cervical cancer HeLa cells co-cultured with human hepatoma HepG2 cells}, series = {Archives of Toxicology}, volume = {97}, journal = {Archives of Toxicology}, number = {1}, doi = {10.1007/s00204-022-03394-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324708}, pages = {295-306}, year = {2023}, abstract = {Pyrrolizidine alkaloids (PAs) are secondary plant metabolites, which can be found as contaminant in various foods and herbal products. Several PAs can cause hepatotoxicity and liver cancer via damaging hepatic sinusoidal endothelial cells (HSECs) after hepatic metabolization. HSECs themselves do not express the required metabolic enzymes for activation of PAs. Here we applied a co-culture model to mimic the in vivo hepatic environment and to study PA-induced effects on not metabolically active neighbour cells. In this co-culture model, bioactivation of PA was enabled by metabolically capable human hepatoma cells HepG2, which excrete the toxic and mutagenic pyrrole metabolites. The human cervical epithelial HeLa cells tagged with H2B-GFP were utilized as non-metabolically active neighbours because they can be identified easily based on their green fluorescence in the co-culture. The PAs europine, riddelliine and lasiocarpine induced micronuclei in HepG2 cells, and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Metabolic inhibition of cytochrome P450 enzymes with ketoconazole abrogated micronucleus formation. The efflux transporter inhibitors verapamil and benzbromarone reduced micronucleus formation in the co-culture model. Furthermore, mitotic disturbances as an additional genotoxic mechanism of action were observed in HepG2 cells and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Overall, we were able to show that PAs were activated by HepG2 cells and the metabolites induced genomic damage in co-cultured HeLa cells.}, language = {en} } @article{DjelićBorozanDimitrijevićSrećkovićetal.2022, author = {Djelić, Ninoslav and Borozan, Sunčica and Dimitrijević-Srećković, Vesna and Pajović, Nevena and Mirilović, Milorad and Stopper, Helga and Stanimirović, Zoran}, title = {Oxidative stress and DNA damage in peripheral blood mononuclear cells from normal, obese, prediabetic and diabetic persons exposed to thyroid hormone in vitro}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285988}, year = {2022}, abstract = {Diabetes, a chronic group of medical disorders characterized byhyperglycemia, has become a global pandemic. Some hormones may influence the course and outcome of diabetes, especially if they potentiate the formation of reactive oxygen species (ROS). There is a close relationship between thyroid disorders and diabetes. The main objective of this investigation was to find out whether peripheral blood mononuclear cells (PBMCs) are more prone to DNA damage by triiodothyronine (T\(_3\)) (0.1, 1 and 10 μM) at various stages of progression through diabetes (obese, prediabetics, and type 2 diabetes mellitus—T2DM persons). In addition, some biochemical parameters of oxidative stress (catalase-CAT, thiobarbituric acid reactive substances—TBARS) and lactate dehydrogenase (LDH) were evaluated. PBMCs from prediabetic and diabetic patients exhibited increased sensitivity for T\(_3\) regarding elevated level of DNA damage, inhibition of catalase, and increase of TBARS and LDH. PBMCs from obese patients reacted in the same manner, except for DNA damage. The results of this study should contribute to a better understanding of the role of thyroid hormones in the progression of T2DM.}, language = {en} } @article{BankogluSchueleStopper2021, author = {Bankoglu, Ezgi Eyluel and Schuele, Carolin and Stopper, Helga}, title = {Cell survival after DNA damage in the comet assay}, series = {Archives of Toxicology}, volume = {95}, journal = {Archives of Toxicology}, number = {12}, doi = {10.1007/s00204-021-03164-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265339}, pages = {3803-3813}, year = {2021}, abstract = {The comet assay is widely used in basic research, genotoxicity testing, and human biomonitoring. However, interpretation of the comet assay data might benefit from a better understanding of the future fate of a cell with DNA damage. DNA damage is in principle repairable, or if extensive, can lead to cell death. Here, we have correlated the maximally induced DNA damage with three test substances in TK6 cells with the survival of the cells. For this, we selected hydrogen peroxide (H\(_{2}\)O\(_{2}\)) as an oxidizing agent, methyl methanesulfonate (MMS) as an alkylating agent and etoposide as a topoisomerase II inhibitor. We measured cell viability, cell proliferation, apoptosis, and micronucleus frequency on the following day, in the same cell culture, which had been analyzed in the comet assay. After treatment, a concentration dependent increase in DNA damage and in the percentage of non-vital and apoptotic cells was found for each substance. Values greater than 20-30\% DNA in tail caused the death of more than 50\% of the cells, with etoposide causing slightly more cell death than H\(_{2}\)O\(_{2}\) or MMS. Despite that, cells seemed to repair of at least some DNA damage within few hours after substance removal. Overall, the reduction of DNA damage over time is due to both DNA repair and death of heavily damaged cells. We recommend that in experiments with induction of DNA damage of more than 20\% DNA in tail, survival data for the cells are provided.}, language = {en} } @article{BankogluStippGerberetal.2021, author = {Bankoglu, Ezgi Eyluel and Stipp, Franzisca and Gerber, Johanna and Seyfried, Florian and Heidland, August and Bahner, Udo and Stopper, Helga}, title = {Effect of cryopreservation on DNA damage and DNA repair activity in human blood samples in the comet assay}, series = {Archives of Toxicology}, volume = {95}, journal = {Archives of Toxicology}, number = {5}, doi = {10.1007/s00204-021-03012-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265326}, pages = {1831-1841}, year = {2021}, abstract = {The comet assay is a commonly used method to determine DNA damage and repair activity in many types of samples. In recent years, the use of the comet assay in human biomonitoring became highly attractive due to its various modified versions, which may be useful to determine individual susceptibility in blood samples. However, in human biomonitoring studies, working with large sample numbers that are acquired over an extended time period requires some additional considerations. One of the most important issues is the storage of samples and its effect on the outcome of the comet assay. Another important question is the suitability of different blood preparations. In this study, we analysed the effect of cryopreservation on DNA damage and repair activity in human blood samples. In addition, we investigated the suitability of different blood preparations. The alkaline and FPG as well as two different types of repair comet assay and an in vitro hydrogen peroxide challenge were applied. Our results confirmed that cryopreserved blood preparations are suitable for investigating DNA damage in the alkaline and FPG comet assay in whole blood, buffy coat and PBMCs. Ex vivo hydrogen peroxide challenge yielded its optimal effect in isolated PBMCs. The utilised repair comet assay with either UVC or hydrogen peroxide-induced lesions and an aphidicolin block worked well in fresh PBMCs. Cryopreserved PBMCs could not be used immediately after thawing. However, a 16-h recovery with or without mitotic stimulation enabled the application of the repair comet assay, albeit only in a surviving cell fraction.}, language = {en} } @article{ReimannStopperPolaketal.2020, author = {Reimann, Hauke and Stopper, Helga and Polak, Thomas and Lauer, Martin and Herrmann, Martin J. and Deckert, J{\"u}rgen and Hintzsche, Henning}, title = {Micronucleus frequency in buccal mucosa cells of patients with neurodegenerative diseases}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, doi = {10.1038/s41598-020-78832-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231430}, year = {2020}, abstract = {Neurodegenerative diseases show an increase in prevalence and incidence, with the most prominent example being Alzheimer's disease. DNA damage has been suggested to play a role in the pathogenesis, but the exact mechanisms remain elusive. We enrolled 425 participants with and without neurodegenerative diseases and analyzed DNA damage in the form of micronuclei in buccal mucosa samples. In addition, other parameters such as binucleated cells, karyolytic cells, and karyorrhectic cells were quantified. No relevant differences in DNA damage and cytotoxicity markers were observed in patients compared to healthy participants. Furthermore, other parameters such as lifestyle factors and diseases were also investigated. Overall, this study could not identify a direct link between changes in buccal cells and neurogenerative diseases, but highlights the influence of lifestyle factors and diseases on the human buccal cytome.}, language = {en} } @article{ReimannStopperHintzsche2020, author = {Reimann, Hauke and Stopper, Helga and Hintzsche, Henning}, title = {Long-term fate of etoposide-induced micronuclei and micronucleated cells in Hela-H2B-GFP cells}, series = {Archives of Toxicology}, volume = {94}, journal = {Archives of Toxicology}, issn = {0340-5761}, doi = {10.1007/s00204-020-02840-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235039}, pages = {3553-3561}, year = {2020}, abstract = {Micronuclei are small nuclear cellular structures containing whole chromosomes or chromosomal fragments. While there is a lot of information available about the origin and formation of micronuclei, less is known about the fate of micronuclei and micronucleated cells. Possible fates include extrusion, degradation, reincorporation and persistence. Live cell imaging was performed to quantitatively analyse the fates of micronuclei and micronucleated cells occurring in vitro. Imaging was conducted for up to 96 h in HeLa-H2B-GFP cells treated with 0.5, 1 and 2 µg/ml etoposide. While a minority of micronuclei was reincorporated into the main nucleus during mitosis, the majority of micronuclei persisted without any alterations. Degradation and extrusion were observed rarely or never. The presence of micronuclei affected the proliferation of the daughter cells and also had an influence on cell death rates. Mitotic errors were found to be clearly increased in micronucleus-containing cells. The results show that micronuclei and micronucleated cells can, although delayed in cell cycle, sustain for multiple divisions.}, language = {en} } @article{WinkelbeinerWandtEbertetal.2020, author = {Winkelbeiner, Nicola and Wandt, Viktoria K. and Ebert, Franziska and Lossow, Kristina and Bankoglu, Ezgi E. and Martin, Maximilian and Mangerich, Aswin and Stopper, Helga and Bornhorst, Julia and Kipp, Anna P. and Schwerdtle, Tanja}, title = {A multi-endpoint approach to base excision repair incision activity augmented by PARylation and DNA damage levels in mice: impact of sex and age}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms21186600}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285706}, year = {2020}, abstract = {Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.}, language = {en} } @article{NaseemOthmanFathyetal.2020, author = {Naseem, Muhammad and Othman, Eman M. and Fathy, Moustafa and Iqbal, Jibran and Howari, Fares M. and AlRemeithi, Fatima A. and Kodandaraman, Geema and Stopper, Helga and Bencurova, Elena and Vlachakis, Dimitrios and Dandekar, Thomas}, title = {Integrated structural and functional analysis of the protective effects of kinetin against oxidative stress in mammalian cellular systems}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, doi = {10.1038/s41598-020-70253-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231317}, year = {2020}, abstract = {Metabolism and signaling of cytokinins was first established in plants, followed by cytokinin discoveries in all kingdoms of life. However, understanding of their role in mammalian cells is still scarce. Kinetin is a cytokinin that mitigates the effects of oxidative stress in mammalian cells. The effective concentrations of exogenously applied kinetin in invoking various cellular responses are not well standardized. Likewise, the metabolism of kinetin and its cellular targets within the mammalian cells are still not well studied. Applying vitality tests as well as comet assays under normal and hyper-oxidative states, our analysis suggests that kinetin concentrations of 500 nM and above cause cytotoxicity as well as genotoxicity in various cell types. However, concentrations below 100 nM do not cause any toxicity, rather in this range kinetin counteracts oxidative burst and cytotoxicity. We focus here on these effects. To get insights into the cellular targets of kinetin mediating these pro-survival functions and protective effects we applied structural and computational approaches on two previously testified targets for these effects. Our analysis deciphers vital residues in adenine phosphoribosyltransferase (APRT) and adenosine receptor (A2A-R) that facilitate the binding of kinetin to these two important human cellular proteins. We finally discuss how the therapeutic potential of kinetin against oxidative stress helps in various pathophysiological conditions.}, language = {en} } @article{HintzscheMontagStopper2018, author = {Hintzsche, Henning and Montag, Gracia and Stopper, Helga}, title = {Induction of micronuclei by four cytostatic compounds in human hematopoietic stem cells and human lymphoblastoid TK6 cells}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {3371}, doi = {10.1038/s41598-018-21680-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176210}, year = {2018}, abstract = {For mutagenicity testing, primary lymphocytes or mammalian cell lines are employed. However, the true target for carcinogenic action of mutagenic chemicals may be stem cells. Since hematopoietic cancers induced by chemical agents originate at the hematopoietic stem cell (HSC) stage and since one of the side effects of chemotherapeutic cancer treatment is the induction of secondary tumors, often leukemias, HSC may be a suitable cell system. We compared the sensitivity of HSC with the genotoxicity testing cell line TK6 for chromosomal mutations. HSC were less sensitive than TK6 cells for the genotoxic effects of the model genotoxins and chemotherapeutic agents doxorubicin, vinblastine, methyl methanesulfonate (MMS) and equally sensitive for mitomycin C (MMC). However, loss of viability after mitomycin C treatment was higher in HSC than in TK6 cells. Among the factors that may influence sensitivity for genomic damage, the generation or response to reactive oxygen species (ROS) and the effectiveness of DNA damage response can be discussed. Here we show that HSC can be used in a standard micronucleus test protocol for chromosomal mutations and that their sensitivity was not higher than that of a classical testing cell line.}, language = {en} } @article{BankogluArnoldHeringetal.2018, author = {Bankoglu, Ezgi Eyluel and Arnold, Charlotte and Hering, Ilona and Hankir, Mohammed and Seyfried, Florian and Stopper, Helga}, title = {Decreased chromosomal damage in lymphocytes of obese patients after bariatric surgery}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {11195}, doi = {10.1038/s41598-018-29581-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177090}, year = {2018}, abstract = {The number of bariatric surgeries being performed worldwide has markedly risen. While the improvement in obesity-associated comorbidities after bariatric surgery is well-established, very little is known about its impact on cancer risk. The peripheral lymphocyte micronucleus test is a widely used method for the monitoring of chromosomal damage levels in vivo, and micronucleus frequency positively correlates with cancer risk. Therefore, the aim of this study was to compare the micronucleus frequency before and after bariatric surgery in obese subjects. Peripheral blood mononuclear cells were collected from 45 obese subjects before and at two time-points after bariatric surgery (6 and 12 months) to assess spontaneous micronucleus frequency. Consistent with the increased cancer risk previously shown, bariatric surgery-induced weight loss led to a significant reduction in lymphocyte micronucleus frequency after 12 months. Interestingly, comorbidities such as type 2 diabetes mellitus and metabolic syndrome further seemed to have an impact on the lymphocyte micronucleus frequency. Our findings may indicate a successful reduction of cancer risk in patients following weight loss caused by bariatric surgery.}, language = {en} }