@article{LeiboldvandenHoveViechtbaueretal.2016, author = {Leibold, NK and van den Hove, DLA and Viechtbauer, W and Buchanan, GF and Goossens, L and Lange, I and Knuts, I and Lesch, KP and Steinbusch, HWM and Schruers, KRJ}, title = {CO\(_{2}\) exposure as translational cross-species experimental model for panic}, series = {Translational Psychiatry}, volume = {6}, journal = {Translational Psychiatry}, number = {e885}, doi = {10.1038/tp.2016.162}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168308}, year = {2016}, abstract = {The current diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders are being challenged by the heterogeneity and the symptom overlap of psychiatric disorders. Therefore, a framework toward a more etiology-based classification has been initiated by the US National Institute of Mental Health, the research domain criteria project. The basic neurobiology of human psychiatric disorders is often studied in rodent models. However, the differences in outcome measurements hamper the translation of knowledge. Here, we aimed to present a translational panic model by using the same stimulus and by quantitatively comparing the same outcome measurements in rodents, healthy human subjects and panic disorder patients within one large project. We measured the behavioral-emotional and bodily response to CO\(_{2}\) exposure in all three samples, allowing for a reliable cross-species comparison. We show that CO\(_{2}\) exposure causes a robust fear response in terms of behavior in mice and panic symptom ratings in healthy volunteers and panic disorder patients. To improve comparability, we next assessed the respiratory and cardiovascular response to CO\(_{2}\), demonstrating corresponding respiratory and cardiovascular effects across both species. This project bridges the gap between basic and human research to improve the translation of knowledge between these disciplines. This will allow significant progress in unraveling the etiological basis of panic disorder and will be highly beneficial for refining the diagnostic categories as well as treatment strategies.}, language = {en} } @article{ZayatsJacobsenKleppeetal.2016, author = {Zayats, T and Jacobsen, KK and Kleppe, R and Jacob, CP and Kittel-Schneider, S and Ribas{\´e}s, M and Ramos-Quiroga, JA and Richarte, V and Casas, M and Mota, NR and Grevet, EH and Klein, M and Corominas, J and Bralten, J and Galesloot, T and Vasquez, AA and Herms, S and Forstner, AJ and Larsson, H and Breen, G and Asherson, P and Gross-Lesch, S and Lesch, KP and Cichon, S and Gabrielsen, MB and Holmen, OL and Bau, CHD and Buitelaar, J and Kiemeney, L and Faraone, SV and Cormand, B and Franke, B and Reif, A and Haavik, J and Johansson, S}, title = {Exome chip analyses in adult attention deficit hyperactivity disorder}, series = {Translational Psychiatry}, volume = {6}, journal = {Translational Psychiatry}, number = {e923}, doi = {10.1038/tp.2016.196}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168297}, year = {2016}, abstract = {Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable childhood-onset neuropsychiatric condition, often persisting into adulthood. The genetic architecture of ADHD, particularly in adults, is largely unknown. We performed an exome-wide scan of adult ADHD using the Illumina Human Exome Bead Chip, which interrogates over 250 000 common and rare variants. Participants were recruited by the International Multicenter persistent ADHD CollaboraTion (IMpACT). Statistical analyses were divided into 3 steps: (1) gene-level analysis of rare variants (minor allele frequency (MAF)<1\%); (2) single marker association tests of common variants (MAF⩾1\%), with replication of the top signals; and (3) pathway analyses. In total, 9365 individuals (1846 cases and 7519 controls) were examined. Replication of the most associated common variants was attempted in 9847 individuals (2077 cases and 7770 controls) using fixed-effects inverse variance meta-analysis. With a Bonferroni-corrected significance level of 1.82E-06, our analyses of rare coding variants revealed four study-wide significant loci: 6q22.1 locus (P=4.46E-08), where NT5DC1 and COL10A1 reside; the SEC23IP locus (P=6.47E-07); the PSD locus (P=7.58E-08) and ZCCHC4 locus (P=1.79E-06). No genome-wide significant association was observed among the common variants. The strongest signal was noted at rs9325032 in PPP2R2B (odds ratio=0.81, P=1.61E-05). Taken together, our data add to the growing evidence of general signal transduction molecules (NT5DC1, PSD, SEC23IP and ZCCHC4) having an important role in the etiology of ADHD. Although the biological implications of these findings need to be further explored, they highlight the possible role of cellular communication as a potential core component in the development of both adult and childhood forms of ADHD.}, language = {en} }