@article{MoratinThoeleLangetal.2023, author = {Moratin, Helena and Th{\"o}le, Anna and Lang, Josephine and Ehret Kasemo, Totta and St{\"o}th, Manuel and Hagen, Rudolf and Scherzad, Agmal and Hackenberg, Stephan}, title = {Ag- but not ZnO-nanoparticles disturb the airway epithelial barrier at subtoxic concentrations}, series = {Pharmaceutics}, volume = {15}, journal = {Pharmaceutics}, number = {10}, issn = {1999-4923}, doi = {10.3390/pharmaceutics15102506}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357403}, year = {2023}, abstract = {Inhalation is considered to be the most relevant source of human exposure to nanoparticles (NPs); however, only a few investigations have addressed the influence of exposing the respiratory mucosal barrier to subcytotoxic doses. In the nasal respiratory epithelium, cells of the mucosa represent one of the first contact points of the human organism with airborne NPs. Disruption of the epithelial barrier by harmful materials can lead to inflammation in addition to potential intrinsic toxicity of the particles. The aim of this study was to investigate whether subtoxic concentrations of zinc oxide (ZnO)- and silver (Ag)-NPs have an influence on upper airway barrier integrity. Nasal epithelial cells from 17 donors were cultured at the air-liquid interface and exposed to ZnO- and Ag-NPs. Barrier function, quantified by transepithelial electrical resistance (TEER), decreased after treatment with 10 µg/mL Ag-NPs, but FITC-dextran permeability remained stable and no change in mRNA levels of tight junction proteins and E-cadherin was detected by real-time quantitative PCR (RT-qPCR). The results indicate that subtoxic concentrations of Ag-NPs may already induce damage of the upper airway epithelial barrier in vitro. The lack of similar disruption by ZnO-NPs of similar size suggests a specific effect by Ag-NPs.}, language = {en} } @article{MeyerStoethMoratinetal.2021, author = {Meyer, Till Jasper and St{\"o}th, Manuel and Moratin, Helena and Ickrath, Pascal and Herrmann, Marietta and Kleinsasser, Norbert and Hagen, Rudolf and Hackenberg, Stephan and Scherzad, Agmal}, title = {Cultivation of head and neck squamous cell carcinoma cells with wound fluid leads to cisplatin resistance via epithelial-mesenchymal transition induction}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms22094474}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258722}, year = {2021}, abstract = {Locoregional recurrence is a major reason for therapy failure after surgical resection of head and neck squamous cell carcinoma (HNSCC). The physiological process of postoperative wound healing could potentially support the proliferation of remaining tumor cells. The aim of this study was to evaluate the influence of wound fluid (WF) on the cell cycle distribution and a potential induction of epithelial-mesenchymal transition (EMT). To verify this hypothesis, we incubated FaDu and HLaC78 cells with postoperative WF from patients after neck dissection. Cell viability in dependence of WF concentration and cisplatin was measured by flow cytometry. Cell cycle analysis was performed by flow cytometry and EMT-marker expression by rtPCR. WF showed high concentrations of interleukin (IL)-6, IL-8, IL-10, CCL2, MCP-1, EGF, angiogenin, and leptin. The cultivation of tumor cells with WF resulted in a significant increase in cell proliferation without affecting the cell cycle. In addition, there was a significant enhancement of the mesenchymal markers Snail 2 and vimentin, while the expression of the epithelial marker E-cadherin was significantly decreased. After cisplatin treatment, tumor cells incubated with WF showed a significantly higher resistance compared with the control group. The effect of cisplatin-resistance was dependent on the WF concentration. In summary, proinflammatory cytokines are predominantly found in WF. Furthermore, the results suggest that EMT can be induced by WF, which could be a possible mechanism for cisplatin resistance.}, language = {en} } @article{MoratinIckrathScherzadetal.2021, author = {Moratin, Helena and Ickrath, Pascal and Scherzad, Agmal and Meyer, Till Jasper and Naczenski, Sebastian and Hagen, Rudolf and Hackenberg, Stephan}, title = {Investigation of the immune modulatory potential of zinc oxide nanoparticles in human lymphocytes}, series = {Nanomaterials}, volume = {11}, journal = {Nanomaterials}, number = {3}, issn = {2079-4991}, doi = {10.3390/nano11030629}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234016}, year = {2021}, abstract = {Zinc oxide nanoparticles (ZnO-NP) are commonly used for a variety of applications in everyday life. In addition, due to its versatility, nanotechnology supports promising approaches in the medical sector. NP can act as drug-carriers in the context of targeted chemo- or immunotherapy, and might also exhibit autonomous immune-modulatory characteristics. Knowledge of potential immunosuppressive or stimulating effects of NP is indispensable for the safety of consumers as well as patients. In this study, primary human peripheral blood lymphocytes of 9 donors were treated with different sub-cytotoxic concentrations of ZnO-NP for the duration of 1, 2, or 3 days. Flow cytometry was performed to investigate changes in the activation profile and the proportion of T cell subpopulations. ZnO-NP applied in this study did not induce any significant alterations in the examined markers, indicating their lack of impairment in terms of immune modulation. However, physicochemical characteristics exert a major influence on NP-associated bioactivity. To allow a precise simulation of the complex molecular processes of immune modulation, a physiological model including the different components of an immune response is needed.}, language = {en} } @article{MeyerScherzadMoratinetal.2019, author = {Meyer, Till Jasper and Scherzad, Agmal and Moratin, Helena and Gehrke, Thomas Eckert and Killisperger, Julian and Hagen, Rudolf and Wohlleben, Gisela and Polat, B{\"u}lent and Dembski, Sofia and Kleinsasser, Norbert and Hackenberg, Stephan}, title = {The radiosensitizing effect of zinc oxide nanoparticles in sub-cytotoxic dosing is associated with oxidative stress in vitro}, series = {Materials}, volume = {12}, journal = {Materials}, number = {24}, issn = {1996-1944}, doi = {10.3390/ma12244062}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193897}, pages = {4062}, year = {2019}, abstract = {Radioresistance is an important cause of head and neck cancer therapy failure. Zinc oxide nanoparticles (ZnO-NP) mediate tumor-selective toxic effects. The aim of this study was to evaluate the potential for radiosensitization of ZnO-NP. The dose-dependent cytotoxicity of ZnO-NP\(_{20 nm}\) and ZnO-NP\(_{100 nm}\) was investigated in FaDu and primary fibroblasts (FB) by an MTT assay. The clonogenic survival assay was used to evaluate the effects of ZnO-NP alone and in combination with irradiation on FB and FaDu. A formamidopyrimidine-DNA glycosylase (FPG)-modified single-cell microgel electrophoresis (comet) assay was applied to detect oxidative DNA damage in FB as a function of ZnO-NP and irradiation exposure. A significantly increased cytotoxicity after FaDu exposure to ZnO-NP\(_{20 nm}\) or ZnO-NP\(_{100 nm}\) was observed in a concentration of 10 µg/mL or 1 µg/mL respectively in 30 µg/mL of ZnO-NP\(_{20 nm}\) or 20 µg/mL of ZnO-NP\(_{100 nm}\) in FB. The addition of 1, 5, or 10 µg/mL ZnO-NP\(_{20 nm}\) or ZnO-NP\(_{100 nm}\) significantly reduced the clonogenic survival of FaDu after irradiation. The sub-cytotoxic dosage of ZnO-NP\(_{100 nm}\) increased the oxidative DNA damage compared to the irradiated control. This effect was not significant for ZnO-NP\(_{20 nm}\). ZnO-NP showed radiosensitizing properties in the sub-cytotoxic dosage. At least for the ZnO-NP\(_{100 nm}\), an increased level of oxidative stress is a possible mechanism of the radiosensitizing effect.}, language = {en} }