@article{WiesslerTalucciPiroetal.2024, author = {Wiessler, Anna-Lena and Talucci, Ivan and Piro, Inken and Seefried, Sabine and H{\"o}rlin, Verena and Baykan, Bet{\"u}l B. and T{\"u}z{\"u}n, Erdem and Schaefer, Natascha and Maric, Hans M. and Sommer, Claudia and Villmann, Carmen}, title = {Glycine receptor β-targeting autoantibodies contribute to the pathology of autoimmune diseases}, series = {Neurology: Neuroimmunology \& Neuroinflammation}, volume = {11}, journal = {Neurology: Neuroimmunology \& Neuroinflammation}, number = {2}, doi = {10.1212/NXI.0000000000200187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349958}, year = {2024}, abstract = {Background and Objectives Stiff-person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM) are rare neurologic disorders of the CNS. Until now, exclusive GlyRα subunit-binding autoantibodies with subsequent changes in function and surface numbers were reported. GlyR autoantibodies have also been described in patients with focal epilepsy. Autoimmune reactivity against the GlyRβ subunits has not yet been shown. Autoantibodies against GlyRα1 target the large extracellular N-terminal domain. This domain shares a high degree of sequence homology with GlyRβ making it not unlikely that GlyRβ-specific autoantibody (aAb) exist and contribute to the disease pathology. Methods In this study, we investigated serum samples from 58 patients for aAb specifically detecting GlyRβ. Studies in microarray format, cell-based assays, and primary spinal cord neurons and spinal cord tissue immunohistochemistry were performed to determine specific GlyRβ binding and define aAb binding to distinct protein regions. Preadsorption approaches of aAbs using living cells and the purified extracellular receptor domain were further used. Finally, functional consequences for inhibitory neurotransmission upon GlyRβ aAb binding were resolved by whole-cell patch-clamp recordings. Results Among 58 samples investigated, cell-based assays, tissue analysis, and preadsorption approaches revealed 2 patients with high specificity for GlyRβ aAb. Quantitative protein cluster analysis demonstrated aAb binding to synaptic GlyRβ colocalized with the scaffold protein gephyrin independent of the presence of GlyRα1. At the functional level, binding of GlyRβ aAb from both patients to its target impair glycine efficacy. Discussion Our study establishes GlyRβ as novel target of aAb in patients with SPS/PERM. In contrast to exclusively GlyRα1-positive sera, which alter glycine potency, aAbs against GlyRβ impair receptor efficacy for the neurotransmitter glycine. Imaging and functional analyses showed that GlyRβ aAbs antagonize inhibitory neurotransmission by affecting receptor function rather than localization.}, language = {en} } @phdthesis{Karwen2024, author = {Karwen, Till}, title = {Platelets promote insulin secretion of pancreatic β-cells}, doi = {10.25972/OPUS-31393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313933}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The pancreas is the key organ for the maintenance of euglycemia. This is regulated in particular by α-cell-derived glucagon and β-cell-derived insulin, which are released in response to nutrient deficiency and elevated glucose levels, respectively. Although glucose is the main regulator of insulin secretion, it is significantly enhanced by various potentiators. Platelets are anucleate cell fragments in the bloodstream that are essential for hemostasis to prevent and stop bleeding events. Besides their classical role, platelets were implemented to be crucial for other physiological and pathophysiological processes, such as cancer progression, immune defense, and angiogenesis. Platelets from diabetic patients often present increased reactivity and basal activation. Interestingly, platelets store and release several substances that have been reported to potentiate insulin secretion by β-cells. For these reasons, the impact of platelets on β-cell functioning was investigated in this thesis. Here it was shown that both glucose and a β-cell-derived substance/s promote platelet activation and binding to collagen. Additionally, platelet adhesion specifically to the microvasculature of pancreatic islets was revealed, supporting the hypothesis of their influence on glucose homeostasis. Genetic or pharmacological ablation of platelet functioning and platelet depletion consistently resulted in reduced insulin secretion and associated glucose intolerance. Further, the platelet-derived lipid fraction was found to enhance glucose-stimulated insulin secretion, with 20-hydroxyeicosatetraenoic acid (20-HETE) and possibly also lyso-precursor of platelet-activating factor (lysoPAF) being identified as crucial factors. However, the acute platelet-stimulated insulin secretion was found to decline with age, as did the levels of platelet-derived 20-HETE. In addition to their direct stimulatory effect on insulin secretion, specific defects in platelet activation have also been shown to affect glucose homeostasis by potentially influencing islet vascular development. Taking together, the results of this thesis suggest a direct and indirect mechanism of platelets in the regulation of insulin secretion that ensures glucose homeostasis, especially in young individuals.}, subject = {Thrombozyt}, language = {en} } @article{MeinertJessenHufnageletal.2024, author = {Meinert, Madlen and Jessen, Christina and Hufnagel, Anita and Kreß, Julia Katharina Charlotte and Burnworth, Mychal and D{\"a}ubler, Theo and Gallasch, Till and Da Xavier Silva, Thamara Nishida and Dos Santos, Anc{\´e}ly Ferreira and Ade, Carsten Patrick and Schmitz, Werner and Kneitz, Susanne and Friedmann Angeli, Jos{\´e} Pedro and Meierjohann, Svenja}, title = {Thiol starvation triggers melanoma state switching in an ATF4 and NRF2-dependent manner}, series = {Redox Biology}, volume = {70}, journal = {Redox Biology}, doi = {10.1016/j.redox.2023.103011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350328}, year = {2024}, abstract = {The cystine/glutamate antiporter xCT is an important source of cysteine for cancer cells. Once taken up, cystine is reduced to cysteine and serves as a building block for the synthesis of glutathione, which efficiently protects cells from oxidative damage and prevents ferroptosis. As melanomas are particularly exposed to several sources of oxidative stress, we investigated the biological role of cysteine and glutathione supply by xCT in melanoma. xCT activity was abolished by genetic depletion in the Tyr::CreER; Braf\(^{CA}\); Pten\(^{lox/+}\) melanoma model and by acute cystine withdrawal in melanoma cell lines. Both interventions profoundly impacted melanoma glutathione levels, but they were surprisingly well tolerated by murine melanomas in vivo and by most human melanoma cell lines in vitro. RNA sequencing of human melanoma cells revealed a strong adaptive upregulation of NRF2 and ATF4 pathways, which orchestrated the compensatory upregulation of genes involved in antioxidant defence and de novo cysteine biosynthesis. In addition, the joint activation of ATF4 and NRF2 triggered a phenotypic switch characterized by a reduction of differentiation genes and induction of pro-invasive features, which was also observed after erastin treatment or the inhibition of glutathione synthesis. NRF2 alone was capable of inducing the phenotypic switch in a transient manner. Together, our data show that cystine or glutathione levels regulate the phenotypic plasticity of melanoma cells by elevating ATF4 and NRF2.}, language = {en} } @unpublished{BrennerZinkWitzingeretal.2024, author = {Brenner, Marian and Zink, Christoph and Witzinger, Linda and Keller, Angelika and Hadamek, Kerstin and Bothe, Sebastian and Neuenschwander, Martin and Villmann, Carmen and von Kries, Jens Peter and Schindelin, Hermann and Jeanclos, Elisabeth and Gohla, Antje}, title = {7,8-Dihydroxyflavone is a direct inhibitor of pyridoxal phosphatase}, series = {eLife}, journal = {eLife}, doi = {10.7554/eLife.93094.2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350446}, year = {2024}, abstract = {Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small molecule screening, protein crystallography and biolayer interferometry, we discover and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.}, language = {en} } @techreport{OPUS4-35963, title = {Platelets - Molecular, cellular and systemic functions in health and disease}, editor = {Nieswandt, Bernhard}, organization = {Collaborative Research Centre/Transregio 240}, doi = {10.25972/OPUS-35963}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359636}, pages = {25}, year = {2024}, abstract = {Besides their central role in haemostasis and thrombosis, platelets are increasingly recognised as versatile effector cells in inflammation, the innate and adaptive immune response, extracellular matrix reorganisation and fibrosis, maintenance of barrier and organ integrity, and host response to pathogens. These platelet functions, referred to as thrombo-inflammation and immunothrombosis, have gained major attention in the COVID-19 pandemic, where patients develop an inflammatory disease state with severe and life-threatening thromboembolic complications. In the CRC/TR 240, a highly interdisciplinary team of basic, translational and clinical scientists explored these emerging roles of platelets with the aim to develop novel treatment concepts for cardiovascular disorders and beyond. We have i) unravelled mechanisms leading to life-threatening thromboembolic complica-tions following vaccination against SARS-CoV-2 with adenoviral vector-based vaccines, ii) identified unrecognised functions of platelet receptors and their regulation, offering new potential targets for pharmacological intervention and iii) developed new methodology to study the biology of megakar-yocytes (MKs), the precursor cells of platelets in the bone marrow, which lay the foundation for the modulation of platelet biogenesis and function. The projects of the CRC/TR 240 built on the unique expertise of our research network and focussed on the following complementary fields: (A) Cell bi-ology of megakaryocytes and platelets and (B) Platelets as regulators and effectors in disease. To achieve this aim, we followed a comprehensive approach starting out from in vitro systems and animal models to clinical research with large prospective patient cohorts and data-/biobanking. Despite the comparably short funding period the CRC/TR 240 discovered basic new mechanisms of platelet biogenesis, signal transduction and effector function and identified potential MK/platelet-specific molecular targets for diagnosis and therapy of thrombotic, haemorrhagic and thrombo-inflammatory disease states.}, subject = {Thrombozyt}, language = {en} } @phdthesis{WeigelverhHoffmann2024, author = {Weigel [verh. Hoffmann], Mathis Leonard}, title = {Thrombozytenfunktionsanalyse als potenzielles Instrument zur Fr{\"u}herkennung von Sepsis}, doi = {10.25972/OPUS-35819}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358193}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Sepsis ist ein h{\"a}ufiges und akut lebensbedrohliches Syndrom, das eine Organfunktionsst{\"o}rung in Folge einer dysregulierten Immunantwort auf eine Infektion beschreibt. Eine fr{\"u}hzeitige Diagnosestellung und Therapieeinleitung sind von zentraler Bedeutung f{\"u}r das {\"U}berleben der Patient:innen. In einer Pilotstudie konnte unsere Forschungsgruppe mittels Durchflusszytometrie eine ausgepr{\"a}gte Hyporeaktivit{\"a}t der Thrombozyten bei Sepsis nachweisen, die einen potenziell neuen Biomarker zur Sepsis-Fr{\"u}herkennung darstellt. Zur Evaluation des Ausmaßes und Entstehungszeitpunktes der detektierten Thrombozytenfunktionsst{\"o}rung wurden im Rahmen der vorliegenden Arbeit zus{\"a}tzlich zu Patient:innen mit Sepsis (SOFA-Score ≥ 2; n=13) auch hospitalisierte Patient:innen mit einer Infektion ohne Sepsis (SOFA-Score < 2; n=12) rekrutiert. Beide Kohorten wurden zu zwei Zeitpunkten (t1: <24h; t2: Tag 5-7) im Krankheitsverlauf mittels Durchflusszytometrie und PFA-200 untersucht und mit einer gesunden Kontrollgruppe (n=28) verglichen. Ph{\"a}notypische Auff{\"a}lligkeiten der Thrombozyten bei Sepsis umfassten: (i) eine ver{\"a}nderte Expression verschiedener Untereinheiten des GPIb-IX-V-Rezeptorkomplexes, die auf ein verst{\"a}rktes Rezeptor-Shedding hindeutet; (ii) ein ausgepr{\"a}gtes Mepacrin-Beladungsdefizit, das auf eine zunehmend reduzierte Anzahl von δ-Granula entlang des Infektion-Sepsis Kontinuums hinweist; (iii) eine Reduktion endst{\"a}ndig gebundener Sialins{\"a}ure im Sinne einer verst{\"a}rkten Desialylierung. Die funktionelle Analyse der Thrombozyten bei Sepsis ergab bei durchflusszytometrischer Messung der Integrin αIIbβ3-Aktivierung (PAC-1-Bindung) eine ausgepr{\"a}gte generalisierte Hyporeaktivit{\"a}t gegen{\"u}ber multiplen Agonisten, die abgeschw{\"a}cht bereits bei Infektion nachweisbar war und gem{\"a}ß ROC-Analysen gut zwischen Infektion und Sepsis diskriminierte (AUC >0.80 f{\"u}r alle Agonisten). Im Gegensatz dazu zeigten Thrombozyten bei Sepsis und Analyse mittels PFA-200 unter Einfluss physiologischer Scherkr{\"a}fte eine normale bis gar beschleunigte Aggregation. Die Reaktivit{\"a}tsmessung von Thrombozyten mittels Durchflusszytometrie stellt weiterhin einen vielversprechenden Biomarker f{\"u}r die Sepsis-Fr{\"u}herkennung dar. F{\"u}r weitere Schlussfolgerungen ist jedoch eine gr{\"o}ßere Kohorte erforderlich. In nachfolgenden Untersuchungen sollten zudem mechanistische Ursachen der beschriebenen ph{\"a}notypischen und funktionellen Auff{\"a}lligkeiten von Thrombozyten bei Infektion und Sepsis z.B. mittels Koinkubationsexperimenten untersucht werden.}, subject = {Sepsis}, language = {de} } @phdthesis{Neagoe2024, author = {Neagoe, Raluca Alexandra Iulia}, title = {Development of techniques for studying the platelet glycoprotein receptors GPVI and GPIb localisation and signalling}, doi = {10.25972/OPUS-31306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313064}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Platelets play an important role in haemostasis by mediating blood clotting at sites of blood vessel damage. Platelets, also participate in pathological conditions including thrombosis and inflammation. Upon vessel damage, two glycoprotein receptors, the GPIb-IX-V complex and GPVI, play important roles in platelet capture and activation. GPIb-IX-V binds to von Willebrand factor and GPVI to collagen. This initiates a signalling cascade resulting in platelet shape change and spreading, which is dependent on the actin cytoskeleton. This thesis aimed to develop and implement different super-resolution microscopy techniques to gain a deeper understanding of the conformation and location of these receptors in the platelet plasma membrane, and to provide insights into their signalling pathways. We suggest direct stochastic optical reconstruction microscopy (dSTORM) and structured illumination microscopy (SIM) as the best candidates for imaging single platelets, whereas expansion microscopy (ExM) is ideal for imaging platelets aggregates. Furthermore, we highlighted the role of the actin cytoskeleton, through Rac in GPVI signalling pathway. Inhibition of Rac, with EHT1864 in human platelets induced GPVI and GPV, but not GPIbα shedding. Furthermore, EHT1864 treatment did not change GPVI dimerisation or clustering, however, it decreased phospholipase Cγ2 phosphorylation levels, in human, but not murine platelets, highlighting interspecies differences. In summary, this PhD thesis demonstrates that; 1) Rac alters GPVI signalling pathway in human but not mouse platelets; 2) our newly developed ExM protocol can be used to image platelet aggregates labelled with F(ab') fragments}, subject = {Platelet-Membranglykoprotein p62}, language = {en} } @phdthesis{Maier2023, author = {Maier, Sophia Edith}, title = {Mapping membrane receptor distribution on resting platelets combining Expansion Microscopy and fluorescence confocal microscopy}, doi = {10.25972/OPUS-30031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Stroke and myocardial infarction are the most prominent and severe consequences of pathological thrombus formation. For prevention and/or treatment of thrombotic events there is a variety of anti-coagulation and antiplatelet medication that all have one side effect in common: the increased risk of bleeding. To design drugs that only intervene in the unwanted aggregation process but do not disturb general hemostasis, it is crucial to decipher the exact clotting pathway which has not been fully understood yet. Platelet membrane receptors play a vital role in the clotting pathway and, thus, the aim of this work is to establish a method to elucidate the interactions, clustering, and reorganization of involved membrane receptors such as GPIIb/IIIa and GPIX as part of the GPIb-IX-V complex. The special challenges regarding visualizing membrane receptor interactions on blood platelets are the high abundancy of the first and the small size of the latter (1—3µm of diameter). The resolution limit of conventional fluorescence microscopy and even super-resolution approaches prevents the successful differentiation of densely packed receptors from one another. Here, this issue is approached with the combination of a recently developed technique called Expansion Microscopy (ExM). The image resolution of a conventional fluorescence microscope is enhanced by simply enlarging the sample physically and thus pulling the receptors apart from each other. This method requires a complex sample preparation and holds lots of obstacles such as variable or anisotropic expansion and low images contrast. To increase ExM accuracy and sensitivity for interrogating blood platelets, it needs optimized sample preparation as well as image analysis pipelines which are the main part of this thesis. The colocalization results show that either fourfold or tenfold expanded, resting platelets allow a clear distinction between dependent, clustered, and independent receptor organizations compared to unexpanded platelets.Combining dual-color Expansion and confocal fluorescence microscopy enables to image in the nanometer range identifying GPIIb/IIIa clustering in resting platelets - a pattern that may play a key role in the clotting pathway}, language = {en} } @phdthesis{Nordblom2023, author = {Nordblom, Noah Frieder}, title = {Synthese und Evaluation von Gephyrinsonden f{\"u}r hochaufl{\"o}sende Mikroskopieverfahren}, doi = {10.25972/OPUS-30230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302300}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This decade saw the development of new high-end light microscopy approaches. These technologies are increasingly used to expand our understanding of cellular function and the molecular mechanisms of life and disease. The precision of state-of-the-art super resolution microscopy is limited by the properties of the applied fluorescent label. Here I describe the synthesis and evaluation of new functional fluorescent probes that specifically stain gephyrin, universal marker of the neuronal inhibitory post-synapse. Selected probe precursor peptides were synthesised using solid phase peptide synthesis and conjugated with selected super resolution capable fluorescent dyes. Identity and purity were defined using chromatography and mass spectrometric methods. To probe the target specificity of the resulting probe variants in cellular context, a high-throughput assay was established. The established semi-automated and parallel workflow was used for the evaluation of three selected probes by defining their co-localization with the expressed fluorescent target protein. My work provided NN1Dc and established the probe as a visualisation tool for essentially background-free visualisation of the synaptic marker protein gephyrin in a cellular context. Furthermore, NN1DA became part of a toolbox for studying the inhibitory synapse ultrastructure and brain connectivity and turned out useful for the development of a label-free, high-throughput protein interaction quantification assay.}, subject = {Fluoreszenzmikroskopie}, language = {en} } @article{DieboldSchoenemannEilersetal.2023, author = {Diebold, Mathias and Sch{\"o}nemann, Lars and Eilers, Martin and Sotriffer, Christoph and Schindelin, Hermann}, title = {Crystal structure of a covalently linked Aurora-A-MYCN complex}, series = {Acta Crystallographica}, volume = {D79}, journal = {Acta Crystallographica}, doi = {10.1107/s2059798322011433}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318855}, pages = {1 -- 9}, year = {2023}, abstract = {Formation of the Aurora-A-MYCN complex increases levels of the oncogenic transcription factor MYCN in neuroblastoma cells by abrogating its degradation through the ubiquitin proteasome system. While some small-molecule inhibitors of Aurora-A were shown to destabilize MYCN, clinical trials have not been satisfactory to date. MYCN itself is considered to be `undruggable' due to its large intrinsically disordered regions. Targeting the Aurora-A-MYCN complex rather than Aurora-A or MYCN alone will open new possibilities for drug development and screening campaigns. To overcome the challenges that a ternary system composed of Aurora-A, MYCN and a small molecule entails, a covalently cross-linked construct of the Aurora-A-MYCN complex was designed, expressed and characterized, thus enabling screening and design campaigns to identify selective binders.}, language = {en} }