@phdthesis{Declerck2010, author = {Declerck, P{\´e}lagie}, title = {Synthesis and technological processing of hybrid organic-inorganic materials for photonic applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56053}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Im Rahmen dieser Doktorarbeit wurden neue UV-strukturierbare organisch-anorganische hybride Polymere f{\"u}r photonische Anwendungen mit einem hohem Brechungsindex und der M{\"o}glichkeit, sie durch Ein- bzw. Zwei-Photonen-Polymerisation zu strukturieren, entwickelt. Die Materialien wurden in Bezug auf ihre chemische Struktur, ihre optischen Eigenschaften, und ihrer F{\"a}higkeit, durch 1PP und 2PP strukturierbar zu sein, untersucht. Besonders mit 2PP konnte man mit diesen neuartigen hybriden Materialien 3D-Strukturen erzeugen. ie Hydrolyse und Polykondensationsreaktionen wurden mit · Organo-Alkoxysilanen und Titanalkoxiden, modifiziert mit und ohne komplexierende Liganden und · Organo-Alkoxysilanen, Titanalkoxiden und Organophosphors{\"a}ure als Precrusoren durchgef{\"u}hrt. Prim{\"a}res Ziel dieser Arbeit war es, den Brechungsindex von ORMOCER®en, die auf der Basis von Organo-Alkoxysilan-Precursoren ohne Heteroelemente synthetisiert werden, zu vergr{\"o}ßern. Die chemische Struktur der synthetisierten Materialien und somit mit ihr die Parameter, die den Brechungsindex beeinflussen, wurden eingehend untersucht. Insbesondere die Synthese-Parameter, wie das Einsetzen der Titanalkoxide und ihrer Konzentration, der Organo-Alkoxysilane, die Katalysator-Konzentration, die verwendeten L{\"o}sungsmittel und auch die Verfahrensparameter f{\"u}r eine sp{\"a}tere Strukturierung durch lithographische Verfahren, wie die UV-Bestrahlungsdosis, die Initiator-Konzentration und der Entwickler, wurden untersucht.}, subject = {Brechzahl}, language = {en} } @phdthesis{Zimmermann2006, author = {Zimmermann, J{\"o}rg}, title = {Optische Wellenleiter und Filter in photonischen Kristallen auf Indiumphosphid-Basis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21767}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Im Rahmen dieser Arbeit wurden optische Wellenleiter und Filter in zweidimensionalen photonischen Kristallen auf Indiumphosphid-Basis hergestellt, numerisch modelliert sowie experimentell im f{\"u}r die optische Nachrichtentechnik wichtigen Wellenl{\"a}ngenbereich um 1,55 µm untersucht. Photonische Kristalle weisen eine periodische Variation des Brechungsindex auf. Durch das gezielte Einbringen von Defekten in die periodische Struktur ist eine Manipulation der photonischen Zustandsdichte und somit der Lichtausbreitung m{\"o}glich. Grundbaustein der durchgef{\"u}hrten Untersuchungen ist der lineare Defektwellenleiter in einem triangul{\"a}ren Gitter aus Luftl{\"o}chern in einer Halbleitermatrix, der durch das Auslassen von einer oder mehreren Lochreihen entsteht. Die Wellenf{\"u}hrung in vertikaler Richtung wird durch eine Halbleiterheterostruktur mit einer Wellenleiterkernschicht aus InGaAsP oder InGaAlAs und Mantelschichten mit niedrigerem Brechungsindex realisiert. Die Einbettung des zweidimensionalen Lochgitters in die InP-basierte Halbleiterheterostruktur erlaubt die Integration mit aktiven optoelektronischen Bauteilen wie Sende- und Empfangselementen sowie die Verwendung bestehender Halbleiterstrukturierungstechnologien. Die photonischen Kristall-Wellenleiter wurden mit hochaufl{\"o}sender Elektronenstrahllithographie und einem zweistufigen Trocken{\"a}tzprozess hergestellt. Damit konnten Lochradien von 100 nm und Lochtiefen von 4 µm realisiert werden. Zur experimentellen Untersuchung der hergestellten Strukturen wurden Messpl{\"a}tze f{\"u}r die optische Charakterisierung von Transmission und chromatischer Dispersion von photonischen Kristall-Wellenleitern und -Filtern aufgebaut und die Phasenverschiebungsmethode sowie die Modulationsmethode mit Offset angewendet. Damit konnte erstmals direkt die Gruppenlaufzeitdispersion eines photonischen Kristall-Wellenleiter-Filters gemessen werden. Numerische Untersuchungen wurden mit dem Verfahren der Entwicklung nach ebenen Wellen sowie mit dem FDTD-Verfahren durchgef{\"u}hrt. Die photonischen Kristall-Wellenleiter besitzen mehrere Wellenleitermoden, die teilweise refraktiven (auf Totalreflexion beruhenden) und teilweise diffraktiven (auf Bragg-Reflexion beruhenden) Charakter haben. Je nach Symmetrie treten zwischen den Moden Ministoppb{\"a}nder auf, die sich im Transmissionsspektrum als Intensit{\"a}tseinbr{\"u}che darstellen. Die spektrale Lage dieser Ministoppb{\"a}nder h{\"a}ngt von der Wellenleitergeometrie ab. Messungen an Wellenleitern mit verschiedener L{\"a}nge zeigen eine starke Variation der spektralen Breite der Ministoppb{\"a}nder. Diese kann mit der Theorie der gekoppelten Moden unter Annahme unterschiedlicher D{\"a}mpfungswerte f{\"u}r die gekoppelten Wellenleitermoden erkl{\"a}rt werden. Die entscheidene Wellenleitereigenschaft f{\"u}r praktische Anwendungen ist die Wellenleiterd{\"a}mpfung. Diese wurde mit den Verfahren der Fabry-P{\´e}rot-Resonanzen sowie der L{\"a}ngenvariation experimentell bestimmt. Durch Wahl eines geeigneten Schichtaufbaus und Optimierung der Herstellungsprozesse konnten die f{\"u}r das untersuchte Materialsystem niedrigsten D{\"a}mpfungswerte in photonischen Kristall-Wellenleitern erzielt werden. F{\"u}r W7-, W5- und W3-Wellenleiter wurden D{\"a}mpfungswerte von 0,2 dB/mm, 0,6 dB/mm und 1,5 dB/mm erreicht, die schmaleren W1-Wellenleiter zeigen Verluste von 27 dB/mm. Zwei Typen optischer Wellenleiter-Filter wurden untersucht: Richtkoppler sowie Resonatoren. Photonische Kristall-Wellenleiter-Richtkoppler eignen sich als ultrakompakte Demultiplexer und Kanal-Auslasser. Bei den experimentell realisierten photonischen Kristall-Wellenleiter-Richtkopplern konnte das eingekoppelte Licht je nach Wellenl{\"a}nge in den einen oder anderen Ausgangswellenleiter gelenkt werden. Bei photonischen Kristall-Wellenleitern mit Resonatoren konnten G{\"u}te-Faktoren bis zu 1,5*10^4 bei einem Kanalabstand von 100 GHz realisiert werden. Die Gruppenlaufzeitdispersion in diesen Strukturen variiert zwischen -250 ps/nm und +250 ps/nm, so dass mit einem 420 µm langen photonischen Kristall-Wellenleiter-Filter die Dispersion von 15 km Standardglasfaser bei 1,55 µm Wellenl{\"a}nge kompensiert werden kann. Mit Hilfe von kleinen Temperatur{\"a}nderungen kann die Resonanzkurve verschoben werden. Der demonstrierte photonische Kristall-Wellenleiter-Resonator stellt daher einen miniaturisierten durchstimmbaren Dispersionskompensator dar.}, subject = {Photonischer Kristall}, language = {de} } @phdthesis{Mahnkopf2005, author = {Mahnkopf, Sven}, title = {Photonic crystal based widely tunable laser diodes and integrated optoelectronic components}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13860}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In a first aspect of this work, the development of photonic crystal based widely tunable laser diodes and their monolithic integration with photonic crystal based passive waveguide and coupler structures is explored theoretically and experimentally. In these devices, the photonic crystal is operated in the photonic bandgap which can be used for the realization of effective reflectors and waveguide structures. Such tunable light sources are of great interest for the development of optical network systems that are based on wavelength division multiplexing. In a second aspect of this work, the operation of a photonic crystal block near the photonic band edge is investigated with respect to the so-called superprism effect. After a few introductory remarks that serve to motivate this work, chapter 3 recapitulates some aspects of semiconductor lasers and photonic crystals that are essential for the understanding of this work so that the reader should be readily equipped with the tools to appreciate the results presented in this work.}, subject = {Laserdiode}, language = {en} }