@article{CullLimaPradoGodinhoFernandesRodriguesetal.2014, author = {Cull, Benjamin and Lima Prado Godinho, Joseane and Fernandes Rodrigues, Juliany Cola and Frank, Benjamin and Schurigt, Uta and Williams, Roderick AM and Coombs, Graham H and Mottram, Jeremy C}, title = {Glycosome turnover in Leishmania major is mediated by autophagy}, series = {Autophagy}, volume = {10}, journal = {Autophagy}, number = {12}, doi = {10.4161/auto.36438}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150277}, pages = {2143-2157}, year = {2014}, abstract = {Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ~20 glycosomes per cell, whereas amastigotes contain ~10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ~15\% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes.}, language = {en} } @phdthesis{Westermann2014, author = {Westermann, Alexander J.}, title = {Dual RNA-seq of pathogen and host}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The infection of a eukaryotic host cell by a bacterial pathogen is one of the most intimate examples of cross-kingdom interactions in biology. Infection processes are highly relevant from both a basic research as well as a clinical point of view. Sophisticated mechanisms have evolved in the pathogen to manipulate the host response and vice versa host cells have developed a wide range of anti-microbial defense strategies to combat bacterial invasion and clear infections. However, it is this diversity and complexity that makes infection research so challenging to technically address as common approaches have either been optimized for bacterial or eukaryotic organisms. Instead, methods are required that are able to deal with the often dramatic discrepancy between host and pathogen with respect to various cellular properties and processes. One class of cellular macromolecules that exemplify this host-pathogen heterogeneity is given by their transcriptomes: Bacterial transcripts differ from their eukaryotic counterparts in many aspects that involve both quantitative and qualitative traits. The entity of RNA transcripts present in a cell is of paramount interest as it reflects the cell's physiological state under the given condition. Genome-wide transcriptomic techniques such as RNA-seq have therefore been used for single-organism analyses for several years, but their applicability has been limited for infection studies. The present work describes the establishment of a novel transcriptomic approach for infection biology which we have termed "Dual RNA-seq". Using this technology, it was intended to shed light particularly on the contribution of non-protein-encoding transcripts to virulence, as these classes have mostly evaded previous infection studies due to the lack of suitable methods. The performance of Dual RNA-seq was evaluated in an in vitro infection model based on the important facultative intracellular pathogen Salmonella enterica serovar Typhimurium and different human cell lines. Dual RNA-seq was found to be capable of capturing all major bacterial and human transcript classes and proved reproducible. During the course of these experiments, a previously largely uncharacterized bacterial small non-coding RNA (sRNA), referred to as STnc440, was identified as one of the most strongly induced genes in intracellular Salmonella. Interestingly, while inhibition of STnc440 expression has been previously shown to cause a virulence defect in different animal models of Salmonellosis, the underlying molecular mechanisms have remained obscure. Here, classical genetics, transcriptomics and biochemical assays proposed a complex model of Salmonella gene expression control that is orchestrated by this sRNA. In particular, STnc440 was found to be involved in the regulation of multiple bacterial target mRNAs by direct base pair interaction with consequences for Salmonella virulence and implications for the host's immune response. These findings exemplify the scope of Dual RNA-seq for the identification and characterization of novel bacterial virulence factors during host infection.}, subject = {Transkriptomanalyse}, language = {en} } @article{VembarScherfSiegel2014, author = {Vembar, Shruti S. and Scherf, Artur and Siegel, T. Nicolai}, title = {Noncoding RNAs as emerging regulators of Plasmodium falciparum virulence gene expression}, series = {Current Opinion in Microbiology}, volume = {20}, journal = {Current Opinion in Microbiology}, number = {100}, issn = {1369-5274}, doi = {10.1016/j.mib.2014.06.013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121416}, pages = {153-61}, year = {2014}, abstract = {The eukaryotic unicellular pathogen Plasmodium falciparum tightly regulates gene expression, both during development and in adaptation to dynamic host environments. This regulation is evident in the mutually exclusive expression of members of clonally variant virulence multigene families. While epigenetic regulators have been selectively identified at active or repressed virulence genes, their specific recruitment remains a mystery. In recent years, noncoding RNAs (ncRNAs) have emerged as lynchpins of eukaryotic gene regulation; by binding to epigenetic regulators, they provide target specificity to otherwise non-specific enzyme complexes. Not surprisingly, there is great interest in understanding the role of ncRNA in P. falciparum, in particular, their contribution to the mutually exclusive expression of virulence genes. The current repertoire of P. falciparum ncRNAs includes, but is not limited to, subtelomeric ncRNAs, virulence gene-associated ncRNAs and natural antisense RNA transcripts. Continued improvement in high-throughput sequencing methods is sure to expand this repertoire. Here, we summarize recent advances in P. falciparum ncRNA biology, with an emphasis on ncRNA-mediated epigenetic modes of gene regulation.}, language = {en} } @article{JaegerFoerstnerSharmaetal.2014, author = {J{\"a}ger, Dominik and F{\"o}rstner, Konrad U. and Sharma, Cynthia M. and Santangelo, Thomas J. and Reeve, John N.}, title = {Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis}, series = {BMC Genomics}, volume = {15}, journal = {BMC Genomics}, number = {684}, issn = {1471-2164}, doi = {10.1186/1471-2164-15-684}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120966}, year = {2014}, abstract = {Background Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiological conditions. Results Sequencing cDNA libraries, generated from RNA isolated from cells under different growth and metabolic conditions has identified >2,700 sites of transcription initiation, established a genome-wide map of transcripts, and consensus sequences for transcription initiation and post-transcription regulatory elements. The primary transcription start sites (TSS) upstream of 1,254 annotated genes, plus 644 primary TSS and their promoters within genes, are identified. Most mRNAs have a 5'-untranslated region (5'-UTR) 10 to 50 nt long (median = 16 nt), but ~20\% have 5'-UTRs from 50 to 300 nt long and ~14\% are leaderless. Approximately 50\% of mRNAs contain a consensus ribosome binding sequence. The results identify TSS for 1,018 antisense transcripts, most with sequences complementary to either the 5'- or 3'-region of a sense mRNA, and confirm the presence of transcripts from all three CRISPR loci, the RNase P and 7S RNAs, all tRNAs and rRNAs and 69 predicted snoRNAs. Two putative riboswitch RNAs were present in growing but not in stationary phase cells. The procedure used is designed to identify TSS but, assuming that the number of cDNA reads correlates with transcript abundance, the results also provide a semi-quantitative documentation of the differences in T. kodakarensis genome expression under different growth conditions and confirm previous observations of substrate-dependent specific gene expression. Many previously unanticipated small RNAs have been identified, some with relative low GC contents (≤50\%) and sequences that do not fold readily into base-paired secondary structures, contrary to the classical expectations for non-coding RNAs in a hyperthermophile. Conclusion The results identify >2,700 TSS, including almost all of the primary sites of transcription initiation upstream of annotated genes, plus many secondary sites, sites within genes and sites resulting in antisense transcripts. The T. kodakarensis genome is small (~2.1 Mbp) and tightly packed with protein-encoding genes, but the transcriptomes established also contain many non-coding RNAs and predict extensive RNA-based regulation in this model Archaeon.}, language = {en} } @article{AdelfingerGentschevdeGuibertetal.2014, author = {Adelfinger, Marion and Gentschev, Ivaylo and de Guibert, Julio Grimm and Weibel, Stephanie and Langbein-Laugwitz, Johanna and H{\"a}rtl, Barbara and Escobar, Hugo Murua and Nolte, Ingo and Chen, Nanhai G. and Aguilar, Richard J. and Yu, Yong A. and Zhang, Qian and Frentzen, Alexa and Szalay, Aladar A.}, title = {Evaluation of a New Recombinant Oncolytic Vaccinia Virus Strain GLV-5b451 for Feline Mammary Carcinoma Therapy}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0104337}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119387}, pages = {e104337}, year = {2014}, abstract = {Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model.}, language = {en} } @article{SiegelHonZhangetal.2014, author = {Siegel, T. Nicolai and Hon, Chung-Chau and Zhang, Qinfeng and Lopez-Rubio, Jose-Juan and Scheidig-Benatar, Christine and Martins, Rafeal M. and Sismeiro, Odile and Copp{\´e}e, Jean-Yves}, title = {Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in Plasmodium falciparum}, series = {BMC Genomics}, volume = {15}, journal = {BMC Genomics}, doi = {10.1186/1471-2164-15-150}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119892}, pages = {150}, year = {2014}, abstract = {Background Advances in high-throughput sequencing have led to the discovery of widespread transcription of natural antisense transcripts (NATs) in a large number of organisms, where these transcripts have been shown to play important roles in the regulation of gene expression. Likewise, the existence of NATs has been observed in Plasmodium but our understanding towards their genome-wide distribution remains incomplete due to the limited depth and uncertainties in the level of strand specificity of previous datasets. Results To gain insights into the genome-wide distribution of NATs in P. falciparum, we performed RNA-ligation based strand-specific RNA sequencing at unprecedented depth. Our data indicate that 78.3\% of the genome is transcribed during blood-stage development. Moreover, our analysis reveals significant levels of antisense transcription from at least 24\% of protein-coding genes and that while expression levels of NATs change during the intraerythrocytic developmental cycle (IDC), they do not correlate with the corresponding mRNA levels. Interestingly, antisense transcription is not evenly distributed across coding regions (CDSs) but strongly clustered towards the 3′-end of CDSs. Furthermore, for a significant subset of NATs, transcript levels correlate with mRNA levels of neighboring genes. Finally, we were able to identify the polyadenylation sites (PASs) for a subset of NATs, demonstrating that at least some NATs are polyadenylated. We also mapped the PASs of 3443 coding genes, yielding an average 3′ untranslated region length of 523 bp. Conclusions Our strand-specific analysis of the P. falciparum transcriptome expands and strengthens the existing body of evidence that antisense transcription is a substantial phenomenon in P. falciparum. For a subset of neighboring genes we find that sense and antisense transcript levels are intricately linked while other NATs appear to be regulated independently of mRNA transcription. Our deep strand-specific dataset will provide a valuable resource for the precise determination of expression levels as it separates sense from antisense transcript levels, which we find to often significantly differ. In addition, the extensive novel data on 3′ UTR length will allow others to perform searches for regulatory motifs in the UTRs and help understand post-translational regulation in P. falciparum.}, language = {en} } @article{RicoYepesRodriguezetal.2014, author = {Rico, Sergio and Yepes, Ana and Rodriguez, Hector and Santamaria, Jorge and Antoraz, Sergio and Krause, Eva M. and Diaz, Margarita and Santamaria, Ramon I.}, title = {Regulation of the AbrA1/A2 Two-Component System in Streptomyces coelicolor and the Potential of Its Deletion Strain as a Heterologous Host for Antibiotic Production}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {10}, issn = {1932-6203}, doi = {10.1371/journal.pone.0109844}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115151}, pages = {e109844}, year = {2014}, abstract = {The Two-Component System (TCS) AbrA1/A2 from Streptomyces coelicolor M145 is a negative regulator of antibiotic production and morphological differentiation. In this work we show that it is able to auto-regulate its expression, exerting a positive induction of its own operon promoter, and that its activation is dependent on the presence of iron. The overexpression of the abrA2 response regulator (RR) gene in the mutant DabrA1/A2 results in a toxic phenotype. The reason is an excess of phosphorylated AbrA2, as shown by phosphoablative and phosphomimetic AbrA2 mutants. Therefore, non-cognate histidine kinases (HKs) or small phospho-donors may be responsible for AbrA2 phosphorylation in vivo. The results suggest that in the parent strain S. coelicolor M145 the correct amount of phosphorylated AbrA2 is adjusted through the phosphorylation-dephosphorylation activity rate of the HK AbrA1. Furthermore, the ABC transporter system, which is part of the four-gene operon comprising AbrA1/A2, is necessary to de-repress antibiotic production in the TCS null mutant. Finally, in order to test the possible biotechnological applications of the DabrA1/A2 strain, we demonstrate that the production of the antitumoral antibiotic oviedomycin is duplicated in this strain as compared with the production obtained in the wild type, showing that this strain is a good host for heterologous antibiotic production. Thus, this genetically modified strain could be interesting for the biotechnology industry.}, language = {en} } @article{BischlerKopfVoss2014, author = {Bischler, Thorsten and Kopf, Matthias and Voss, Bjoern}, title = {Transcript mapping based on dRNA-seq data}, series = {BMC Bioinformatics}, volume = {15}, journal = {BMC Bioinformatics}, number = {122}, issn = {1471-2105}, doi = {10.1186/1471-2105-15-122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116663}, year = {2014}, abstract = {Background: RNA-seq and its variant differential RNA-seq (dRNA-seq) are today routine methods for transcriptome analysis in bacteria. While expression profiling and transcriptional start site prediction are standard tasks today, the problem of identifying transcriptional units in a genome-wide fashion is still not solved for prokaryotic systems. Results: We present RNASEG, an algorithm for the prediction of transcriptional units based on dRNA-seq data. A key feature of the algorithm is that, based on the data, it distinguishes between transcribed and un-transcribed genomic segments. Furthermore, the program provides many different predictions in a single run, which can be used to infer the significance of transcriptional units in a consensus procedure. We show the performance of our method based on a well-studied dRNA-seq data set for Helicobacter pylori. Conclusions: With our algorithm it is possible to identify operons and 5'- and 3'-UTRs in an automated fashion. This alleviates the need for labour intensive manual inspection and enables large-scale studies in the area of comparative transcriptomics.}, language = {en} } @article{TalmanPrietoMarquesetal.2014, author = {Talman, Arthur M. and Prieto, Judith H. and Marques, Sara and Ubaida-Mohien, Ceereena and Lawniczak, Mara and Wass, Mark N. and Xu, Tao and Frank, Roland and Ecker, Andrea and Stanway, Rebecca S. and Krishna, Sanjeev and Sternberg, Michael J. E. and Christophides, Georges K. and Graham, David R. and Dinglasan, Rhoel R. and Yates, John R., III and Sinden, Robert E.}, title = {Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility}, series = {Malaria Journal}, volume = {13}, journal = {Malaria Journal}, number = {315}, doi = {10.1186/1475-2875-13-315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115572}, year = {2014}, abstract = {Background: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. Methods: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. Results: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. Conclusions: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.}, language = {en} } @article{WagnerVolkmerSharanetal.2014, author = {Wagner, Ines and Volkmer, Michael and Sharan, Malvika and Villaveces, Jose M. and Oswald, Felix and Surendranath, Vineeth and Habermann, Bianca H.}, title = {morFeus: a web-based program to detect remotely conserved orthologs using symmetrical best hits and orthology network scoring}, series = {BMC Bioinformatics}, volume = {15}, journal = {BMC Bioinformatics}, number = {263}, doi = {10.1186/1471-2105-15-263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115590}, year = {2014}, abstract = {Background: Searching the orthologs of a given protein or DNA sequence is one of the most important and most commonly used Bioinformatics methods in Biology. Programs like BLAST or the orthology search engine Inparanoid can be used to find orthologs when the similarity between two sequences is sufficiently high. They however fail when the level of conservation is low. The detection of remotely conserved proteins oftentimes involves sophisticated manual intervention that is difficult to automate. Results: Here, we introduce morFeus, a search program to find remotely conserved orthologs. Based on relaxed sequence similarity searches, morFeus selects sequences based on the similarity of their alignments to the query, tests for orthology by iterative reciprocal BLAST searches and calculates a network score for the resulting network of orthologs that is a measure of orthology independent of the E-value. Detecting remotely conserved orthologs of a protein using morFeus thus requires no manual intervention. We demonstrate the performance of morFeus by comparing it to state-of-the-art orthology resources and methods. We provide an example of remotely conserved orthologs, which were experimentally shown to be functionally equivalent in the respective organisms and therefore meet the criteria of the orthology-function conjecture. Conclusions: Based on our results, we conclude that morFeus is a powerful and specific search method for detecting remotely conserved orthologs.}, language = {en} }