@unpublished{StennettMattockPentecostetal.2018, author = {Stennett, Tom and Mattock, James and Pentecost, Leanne and Vargas, Alfredo and Braunschweig, Holger}, title = {Chelated Diborenes and their Inverse-Electron-Demand Diels- Alder Reactions with Dienes}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201809217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178268}, year = {2018}, abstract = {A doubly base-stabilized diborane based on a benzylphosphine linker was prepared by a salt elimination reaction between 2-LiC\(_6\)H\(_4\)CH\(_2\)PCy\(_2\).Et\(_2\)O and B\(_2\)Br\(_4\). This compound was reduced with KC8 to its corresponding diborene, with the benzylphosphine forming a five-membered chelate. The diborene reacts with butadiene, 2-trimethylsiloxy-1,3-butadiene and isoprene to form 4,5-diboracyclohexenes, which interconvert between their 1,1- (geminal) and 1,2- (vicinal) chelated isomers. The 1,1-chelated diborene undergoes a halide-catalysed isomerisation into its thermodynamically favoured 1,2-isomer, which undergoes Diels-Alder reactions more slowly than the kinetic product.}, language = {en} } @unpublished{StennettBertermannBraunschweig2018, author = {Stennett, Tom and Bertermann, R{\"u}diger and Braunschweig, Holger}, title = {Construction of Linear and Branched Tetraboranes via 1,1- and 1,2-Diboration of Diborenes}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201809976}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178276}, year = {2018}, abstract = {Sterically unencumbered diborenes based on a benzylphosphine chelate undergo diboration reactions with bis(catecholato)diboron in the absence of a catalyst to yield tetraboranes. The symmetrical diborenes studied undergo 1,2- diborations, whereas an unsymmetrical derivative was found to yield a triborylborane-phosphine adduct as the result of a formal 1,1-diboration. A related borylborylene compound also underwent a 1,2-diboration to produce a borylene-borane adduct.}, language = {en} } @article{BoehnkeDellermannCeliketal.2018, author = {B{\"o}hnke, Julian and Dellermann, Theresa and Celik, Mehmet Ali and Krummenacher, Ivo and Dewhurst, Rian D. and Demeshko, Serhiy and Ewing, William C. and Hammond, Kai and Heß, Merlin and Bill, Eckhard and Welz, Eileen and R{\"o}hr, Merle I. S. and Mitric, Roland and Engels, Bernd and Meyer, Franc and Braunschweig, Holger}, title = {Isolation of diborenes and their 90°-twisted diradical congeners}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, number = {Article number: 1197}, doi = {10.1038/s41467-018-02998-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160431}, year = {2018}, abstract = {Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound.}, language = {en} }