@article{HackerUlmerFasskeetal.1987, author = {Hacker, J{\"o}rg and Ulmer, E. and Fasske, E. and Schmidt, G.}, title = {Isolation and characterization of coliphage Omega18A specific for Escherichia coli O18ac strains}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73001}, year = {1987}, abstract = {The bactedophage Q18A, specific for Escherichia coli 018ac srrains, was isolated frorn sewage. The results of host range and conjugation experiments showed that the sensitivity of bacteria to the phage is associated with rhe presence of 018ac antigens. With sorne of rhe 018 strains rhe phage Q18A produces clear Iysis on bacterial lawns only when applied at a high multiplicity and moreover the phage does not multiply. With rhe help of the phage Ql8A, E. coli 0 18ac strains could be divided inro rwo serologically clistinct subgroups called 018A and 018A1• E. coli strains belanging to the sugroup 0 ISAare sensitive to phage Q t8A wheteas bacteria of subgroup A1 are resistanr.}, subject = {Escherichia coli}, language = {en} } @article{HughesHackerDueveletal.1987, author = {Hughes, C. and Hacker, J{\"o}rg and D{\"u}vel, H. and Goebel, W}, title = {Chromosomal deletions and rearrangements cause coordinate loss of hemolysis, fimbriation and serum resistance in an uropathogenic strain of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59470}, year = {1987}, abstract = {No abstract available}, subject = {Infektionsbiologie}, language = {en} } @article{MarreHacker1987, author = {Marre, R. and Hacker, J{\"o}rg}, title = {Role of S and common type I-fimbriae of Escherichia coli in experimental upper and lower urinary tract infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59468}, year = {1987}, abstract = {No abstract available}, subject = {Infektionsbiologie}, language = {en} } @article{SchmollHackerGoebel1987, author = {Schmoll, T. and Hacker, J{\"o}rg and Goebel, W.}, title = {Nucleotide sequence of the sfaA gene coding for the S fimbrial protein subunit of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59480}, year = {1987}, abstract = {The sfaA gene of the uropathogenic Escherichia coli 06 strain 536, which is responsible for the determination of the S fimbrial protein subunit, was sequenced. The structural gene codes for a polypeptide of 180 amino acids including a 24-residue N-terminal signal sequence. A size of 15.95 kDa was calculated for the processed SfaA protein. The nucleotide and deduced amino acid sequences show significant homology to those of the F1C fimbria and, to a lesser extent, of the mannose- sensitive hemagglutinating fimbria (FimA, PilA). Only week homology toP fimbriae subunits (F72 , Pap) was found.}, subject = {Infektionsbiologie}, language = {en} } @article{OttSchmollGoebeletal.1987, author = {Ott, M. and Schmoll, T. and Goebel, W. and Van Die, I. and Hacker, J{\"o}rg}, title = {Comparison of the genetic determinant coding for the S-fimbrial adhesin (sfa) of Escherichia coli to other chromosomally encoded fimbrial determinants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59499}, year = {1987}, abstract = {DNA probes specific for different regions of the S-fimbrial adhesin (sja) determinant were constructed and hybridized with DNA sequences coding for P (F8 and F13), mannose-sensitive hemagglutinating type 1 (FlA), and FlC fimbriae. While the sfa and F1C DNA determinants exhibited homology along their entire lengths, the P-fimbrial and type 1-fimbrial determinants exhibited homology to regions of the sfa duster responsible for the control of transcription and, to a minor extent, to regions coding for proteins involved in biogenesis and/or adhesion of the fimbriae and for the N-terminal part of the fimbrillin subunit.}, subject = {Infektionsbiologie}, language = {en} } @article{ChakrabortyKathariouHackeretal.1987, author = {Chakraborty, Trinad and Kathariou, Sophia and Hacker, J{\"o}rg and Hof, Herbert and Huhle, Burkhard and Wagner, Wilma and Kuhn, Michael and Goebel, Werner}, title = {Molecular analysis of bacterial cytolysins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40328}, year = {1987}, abstract = {Results of molecular and pathogenic studies of three different bacterial hemolysins (cytolysins) are presented. These exoproteins derive from the two gram-negative bacteria Escherichia coli and Aeromonas hydrophila and from the gram-positive pathogen Listeria monocytogenes. The hemolysin of E. coli is determined by an 8-kilobase (kb) region that includes four clustered genes (hlyC, hlyA, hlyB, and hlyD). This hemolysin determinant is part either of large transmissible plasmids or of the chromosome. The genes located chromosomally are found predominantly in E. coli strains that can cause pyelonephritis and/or other extraintestinal infections. A detailed analysis of the chromosomal hly determinants of one nephropathogenic E. coli strain revealed the existence of specific, large chromosomal insertions 75 kb and lOO kb in size that carry the hly genes but that also influence the expression of other virulence properties, i.e., adhesion and serum resistance. The direct involvement of E. coli hemolysin in virulence could be demonstrated in several model systems. The genetic determinants for hemolysin (cytolysin) formation in , A. hydrophila (aerolysin) and L. monocytogenes (listeriolysin) are less complex. Both cytolysins seem to be encoded by single genes, although two loci (aerB and aerC) that affect the expression and activity of aerolysin have been identified distal and proximal to the structural gene for aerolysin (aerA). Cytolysin-negative mutants of both bacteria were obtained by site-specific deletion and/or transposon mutagenesis. These mutants show a drastic reduction in the virulence of the respective bacteria.}, language = {en} } @inproceedings{MochHoschuetzkyHackeretal.1987, author = {Moch, Thomas and Hosch{\"u}tzky, Heinz and Hacker, J{\"o}rg and Kr{\"o}nke, Klaus-D. and Jann, Klaus}, title = {Isolation and characterization of the \(\alpha\)-Sialyl-\(\beta\) 2-3-Galactosyl (S)-Specific Adhesin fimbriated Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40330}, year = {1987}, abstract = {The \(\alpha\)-Sialyl-\(\beta\) 2-3-Galactosyl-specific adhesin (S adhesin) was isolated from cells of a recombinant Escherichia coli K-12 strain expressing the S-flmbrial adhesin complex. A crude cell extract was partiaUy dissociated into fimbriae and an adhesin-enriched fraction by heating to 7O°C. From the latter, adhesin was purified to apparent homogeneity (by fast protein liquid chromatography, immunoblot, and NaDodSO\(_4\)/PAGE) by differential ammonium sulfate precipitation, dissociation in 8 M guanidine hydrochloride, and high-resolution anion-exchange chromatography in 8 M urea. The purified adhesin formed an aggregate of M\(_r\)\(\approx\)10\(^6\) that was made up of one type of 12-kDa polypeptide (fimbrillin is 16.5 kDa). It had pI value of 4.7 (fimbriae has a pI value of 6). Adhesin and fimbrillin had different amino add compositions. The purified adhesins agglutinated human and bovine erythrocytes with the same speclfkity as the whole bacteria; purified fimbriae were not adhesive. Monoclonal anti-adhesin and anti-fimbriae antibodies were obtained. Monoclonal antiadhesin, but none of the anti-fimbriae, antibodies inhibited the agglutination of erythrocytes. The anti-adhesive antibodies were used in immuno-gold electron microscopy to localize adhesin exclusively on the fimbriae, with a possible preference to their tips.}, language = {en} } @incollection{HandmanMitchellMcConvilleetal.1987, author = {Handman, E. and Mitchell, G. F. and McConville, M. J. and Moll, Heidrun}, title = {Towards a carbohydrate-based vaccine against leishmaniasis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33827}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1987}, abstract = {No abstract available}, language = {en} }