@article{Ravat2021, author = {Ravat, Prince}, title = {Carbo[n]helicenes Restricted to Enantiomerize: An Insight into the Design Process of Configurationally Stable Functional Chiral PAHs}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {12}, doi = {10.1002/chem.202004488}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225871}, pages = {3957 -- 3967}, year = {2021}, abstract = {The most important stereodynamic feature of carbo[n]helicenes is the interconversion of their enantiomers. The Gibbs activation energy (ΔG≠(T)) of this process, which determines the rate of enantiomerization, dictates the configurational stability of [n]helicenes. High values of ΔG≠(T) are required for applications of functional chiral molecules incorporating [n]helicenes or helicene substructures. This minireview provides an overview of the mechanism, recent developments, and factors affecting the enantiomerization of [n]helicenes, which will accelerate the design process of configurationally stable functional chiral molecules based on helicene substructures. Additionally, this minireview addresses the misconception and irregularities in the recent literature on how the terms "racemization" and "enantiomerization" are used as well as how the activation parameters are calculated for [n]helicenes and related compounds.}, language = {en} } @article{SanchezNayaStepanenkoMandeletal.2021, author = {Sanchez-Naya, Roberto and Stepanenko, Vladimir and Mandel, Karl and Beuerle, Florian}, title = {Modulation of Crystallinity and Optical Properties in Composite Materials Combining Iron Oxide Nanoparticles and Dye-Containing Covalent Organic Frameworks}, series = {Organic Materials}, volume = {3}, journal = {Organic Materials}, doi = {10.1055/s-0040-1722655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231480}, pages = {17-24}, year = {2021}, abstract = {Two series of organic-inorganic composite materials were synthesized through solvothermal imine condensation between diketopyrrolopyrrole dialdehyde DPP-1 and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP) in the presence of varying amounts of either amino- or carboxy-functionalized superparamagnetic iron oxide nanoparticles (FeO). Whereas high FeO loading induced cross-linking of the inorganic nanoparticles by amorphous imine polymers, a lower FeO content resulted in the formation of crystalline covalent organic framework domains. All hybrid materials were analyzed by magnetization measurements, powder X-ray diffraction, electron microscopy, IR, and UV/Vis absorption spectroscopy. Crystallinity, chromophore stacking, and visible absorption features are directly correlated to the mass fraction of the components, thus allowing for a fine-tuning of materials properties.}, language = {en} } @article{WuerthnerNoll2021, author = {W{\"u}rthner, Frank and Noll, Niklas}, title = {A Calix[4]arene-Based Cyclic Dinuclear Ruthenium Complex for Light-Driven Catalytic Water Oxidation}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {1}, doi = {10.1002/chem.202004486}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230030}, pages = {444-450}, year = {2021}, abstract = {A cyclic dinuclear ruthenium(bda) (bda: 2,2'-bipyridine-6,6'-dicarboxylate) complex equipped with oligo(ethylene glycol)-functionalized axial calix[4]arene ligands has been synthesized for homogenous catalytic water oxidation. This novel Ru(bda) macrocycle showed significantly increased catalytic activity in chemical and photocatalytic water oxidation compared to the archetype mononuclear reference [Ru(bda)(pic)\(_2\)]. Kinetic investigations, including kinetic isotope effect studies, disclosed a unimolecular water nucleophilic attack mechanism of this novel dinuclear water oxidation catalyst (WOC) under the involvement of the second coordination sphere. Photocatalytic water oxidation with this cyclic dinuclear Ru complex using [Ru(bpy)\(_3\)]Cl\(_2\) as a standard photosensitizer revealed a turnover frequency of 15.5 s\(^{-1}\) and a turnover number of 460. This so far highest photocatalytic performance reported for a Ru(bda) complex underlines the potential of this water-soluble WOC for artificial photosynthesis.}, language = {en} } @article{WuerthnerMezaChinchaSchindleretal.2021, author = {W{\"u}rthner, Frank and Meza-Chincha, Ana-Lucia and Schindler, Dorothee and Natali, Mirco}, title = {Effects of Photosensitizers and Reaction Media on Light-Driven Water Oxidation with Trinuclear Ruthenium Macrocycles}, series = {ChemPhotoChem}, volume = {5}, journal = {ChemPhotoChem}, number = {2}, doi = {10.1002/cptc.202000133}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230116}, pages = {173-183}, year = {2021}, abstract = {Photocatalytic water oxidation is a promising process for the production of solar fuels and the elucidation of factors that influence this process is of high significance. Thus, we have studied in detail light-driven water oxidation with a trinuclear Ru(bda) (bda: 2,2'-bipyridine-6,6'-dicarboxylate) macrocycle MC3 and its highly water soluble derivative m-CH\(_2\)NMe\(_2\)-MC3 using a series of ruthenium tris(bipyridine) complexes as photosensitizers under varied reaction conditions. Our investigations showed that the catalytic activities of these Ru macrocycles are significantly affected by the choice of photosensitizer (PS) and reaction media, in addition to buffer concentration, light intensity and concentration of the sensitizer. Our steady-state and transient spectroscopic studies revealed that the photocatalytic performance of trinuclear Ru(bda) macrocycles is not limited by their intrinsic catalytic activities but rather by the efficiency of photogeneration of oxidant PS\(^+\) and its ability to act as an oxidizing agent to the catalysts as both are strongly dependent on the choice of photosensitizer and the amount of employed organic co-solvent.}, language = {en} } @article{KokicHillenTegunovetal.2021, author = {Kokic, Goran and Hillen, Hauke S. and Tegunov, Dimitry and Dienermann, Christian and Seitz, Florian and Schmitzova, Jana and Farnung, Lucas and Siewert, Aaron and H{\"o}bartner, Claudia and Cramer, Patrick}, title = {Mechanism of SARS-CoV-2 polymerase stalling by remdesivir}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-020-20542-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220979}, year = {2021}, abstract = {Remdesivir is the only FDA-approved drug for the treatment of COVID-19 patients. The active form of remdesivir acts as a nucleoside analog and inhibits the RNA-dependent RNA polymerase (RdRp) of coronaviruses including SARS-CoV-2. Remdesivir is incorporated by the RdRp into the growing RNA product and allows for addition of three more nucleotides before RNA synthesis stalls. Here we use synthetic RNA chemistry, biochemistry and cryoelectron microscopy to establish the molecular mechanism of remdesivir-induced RdRp stalling. We show that addition of the fourth nucleotide following remdesivir incorporation into the RNA product is impaired by a barrier to further RNA translocation. This translocation barrier causes retention of the RNA 3ʹ-nucleotide in the substrate-binding site of the RdRp and interferes with entry of the next nucleoside triphosphate, thereby stalling RdRp. In the structure of the remdesivir-stalled state, the 3ʹ-nucleotide of the RNA product is matched and located with the template base in the active center, and this may impair proofreading by the viral 3ʹ-exonuclease. These mechanistic insights should facilitate the quest for improved antivirals that target coronavirus replication.}, language = {en} }