@article{DornHerzberg2021, author = {Dorn, Franziska and Herzberg, Moriz}, title = {Response to Letter to the Editor "Keeping Late Thrombectomy Imaging Protocols Simple to Avoid Analysis Paralysis"}, series = {Clinical Neuroradiology}, volume = {31}, journal = {Clinical Neuroradiology}, number = {3}, issn = {1869-1439}, doi = {10.1007/s00062-021-01091-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307023}, pages = {813-814}, year = {2021}, language = {en} } @article{MorisChristmannWirtgenetal.2021, author = {Moris, Victoria C. and Christmann, Katharina and Wirtgen, Aline and Belokobylskij, Sergey A. and Berg, Alexander and Liebig, Wolf-Harald and Soon, Villu and Baur, Hannes and Schmitt, Thomas and Niehuis, Oliver}, title = {Cuticular hydrocarbons on old museum specimens of the spiny mason wasp, Odynerus spinipes (Hymenoptera: Vespidae: Eumeninae), shed light on the distribution and on regional frequencies of distinct chemotypes}, series = {Chemoecology}, volume = {31}, journal = {Chemoecology}, number = {5}, issn = {0937-7409}, doi = {10.1007/s00049-021-00350-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-306999}, pages = {311-322}, year = {2021}, abstract = {The mason wasp Odynerus spinipes shows an exceptional case of intrasexual cuticular hydrocarbon (CHC) profile dimorphism. Females of this species display one of two CHC profiles (chemotypes) that differ qualitatively and quantitatively from each other. The ratio of the two chemotypes was previously shown to be close to 1:1 at three sites in Southern Germany, which might not be representative given the Palearctic distribution of the species. To infer the frequency of the two chemotypes across the entire distributional range of the species, we analyzed with GC-MS the CHC profile of 1042 dry-mounted specimens stored in private and museum collections. We complemented our sampling by including 324 samples collected and preserved specifically for studying their CHCs. We were capable of reliably identifying the chemotypes in 91\% of dry-mounted samples, some of which collected almost 200 years ago. We found both chemotypes to occur in the Far East, the presumed glacial refuge of the species, and their frequency to differ considerably between sites and geographic regions. The geographic structure in the chemotype frequencies could be the result of differential selection regimes and/or different dispersal routes during the colonization of the Western Palearctic. The presented data pave the route for disentangling these factors by providing information where to geographically sample O. spinipes for population genetic analyses. They also form the much-needed basis for future studies aiming to understand the evolutionary and geographic origin as well as the genetics of the astounding CHC profile dimorphism that O. spinipes females exhibit.}, language = {en} } @article{BaurRamserKelleretal.2021, author = {Baur, Johannes and Ramser, Michaela and Keller, Nicola and Muysoms, Filip and D{\"o}rfer, J{\"o}rg and Wiegering, Armin and Eisner, Lukas and Dietz, Ulrich A.}, title = {Robotic hernia repair II. English version}, series = {Der Chirurg}, volume = {92}, journal = {Der Chirurg}, number = {Suppl 1}, doi = {10.1007/s00104-021-01479-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323866}, pages = {S15-S26}, year = {2021}, abstract = {Endoscopic management of umbilical and incisional hernias has adapted to the limitations of conventional laparoscopic instruments over the past 30 years. This includes the development of meshes for intraperitoneal placement (intraperitoneal onlay mesh, IPOM), with antiadhesive coatings; however, adhesions do occur in a significant proportion of these patients. Minimally invasive procedures result in fewer perioperative complications, but with a slightly higher recurrence rate. With the ergonomic resources of robotics, which offers angled instruments, it is now possible to implant meshes in a minimally invasively manner in different abdominal wall layers while achieving morphologic and functional reconstruction of the abdominal wall. This video article presents the treatment of ventral and incisional hernias with mesh implantation into the preperitoneal space (robot-assisted transabdominal preperitoneal ventral hernia repair, r‑ventral TAPP) as well as into the retrorectus space (r-Rives and robotic transabdominal retromuscular umbilical prosthetic repair, r‑TARUP, respectively). The results of a cohort study of 118 consecutive patients are presented and discussed with regard to the added value of the robotic technique in extraperitoneal mesh implantation and in the training of residents.}, language = {en} } @article{RamserBaurKelleretal.2021, author = {Ramser, Michaela and Baur, Johannes and Keller, Nicola and Kukleta, Jan F. and D{\"o}rfer, J{\"o}rg and Wiegering, Armin and Eisner, Lukas and Dietz, Ulrich A.}, title = {Robotic hernia surgery I. English version}, series = {Der Chirurg}, volume = {92}, journal = {Der Chirurg}, number = {Suppl 1}, doi = {10.1007/s00104-021-01446-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323934}, pages = {S1-S13}, year = {2021}, abstract = {The treatment of inguinal hernias with open and minimally invasive procedures has reached a high standard in terms of outcome over the past 30 years. However, there is still need for further improvement, mainly in terms of reduction of postoperative seroma, chronic pain, and recurrence. This video article presents the endoscopic anatomy of the groin with regard to robotic transabdominal preperitoneal patch plasty (r‑TAPP) and illustrates the surgical steps of r‑TAPP with respective video sequences. The results of a cohort study of 302 consecutive hernias operated by r‑TAPP are presented and discussed in light of the added value of the robotic technique, including advantages for surgical training. r‑TAPP is the natural evolution of conventional TAPP and has the potential to become a new standard as equipment availability increases and material costs decrease. Future studies will also have to refine the multifaceted added value of r‑TAPP with new parameters.}, language = {en} } @article{DietzKudsiGarciaUrenaetal.2021, author = {Dietz, Ulrich A. and Kudsi, O. Yusef and Garcia-Ure{\~n}a, Miguel and Baur, Johannes and Ramser, Michaela and Maksimovic, Sladjana and Keller, Nicola and D{\"o}rfer, J{\"o}rg and Eisner, Lukas and Wiegering, Armin}, title = {Robotic hernia repair III. English version}, series = {Der Chirurg}, volume = {92}, journal = {Der Chirurg}, number = {Suppl 1}, doi = {10.1007/s00104-021-01500-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323896}, pages = {S28-S39}, year = {2021}, abstract = {The principle of targeted separation or weakening of individual components of the abdominal wall to relieve tension in the median line during major abdominal reconstruction has been known for over 30 years as anterior component separation (aCS) and is an established procedure. In search of alternatives with lower complication rates, posterior component separation (pCS) was developed; transversus abdominis release (TAR) is a nerve-sparing modification of pCS. With the ergonomic resources of robotics (e.g., angled instruments), TAR can be performed in a minimally invasive manner (r-TAR): hernia gaps of up to 14 cm can be closed and a large extraperitoneal mesh implanted. In this video article, the treatment of large incisional hernias using the r‑TAR technique is presented. Exemplary results of a cohort study in 13 consecutive patients are presented. The procedure is challenging, but our own results—as well as reports from the literature—are encouraging. The r‑TAR is becoming the pinnacle procedure for abdominal wall reconstruction.}, language = {en} } @article{NavarroStegnerNieswandtetal.2021, author = {Navarro, Stefano and Stegner, David and Nieswandt, Bernhard and Heemskerk, Johan W. M. and Kuijpers, Marijke J. E.}, title = {Temporal roles of platelet and coagulation pathways in collagen- and tissue factor-induced thrombus formation}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms23010358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284219}, year = {2021}, abstract = {In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.}, language = {en} } @article{BauerMallyLiedtke2021, author = {Bauer, Benedikt and Mally, Angela and Liedtke, Daniel}, title = {Zebrafish embryos and larvae as alternative animal models for toxicity testing}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {24}, issn = {1422-0067}, doi = {10.3390/ijms222413417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284225}, year = {2021}, abstract = {Prerequisite to any biological laboratory assay employing living animals is consideration about its necessity, feasibility, ethics and the potential harm caused during an experiment. The imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal scientific standard of animal experimentation worldwide. The rising amount of laboratory investigations utilizing living animals throughout the last decades, either for regulatory concerns or for basic science, demands the development of alternative methods in accordance with 3R to help reduce experiments in mammals. This demand has resulted in investigation of additional vertebrate species displaying favourable biological properties. One prominent species among these is the zebrafish (Danio rerio), as these small laboratory ray-finned fish are well established in science today and feature outstanding biological characteristics. In this review, we highlight the advantages and general prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing, with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can refine future toxicological studies in this species.}, language = {en} } @article{RamirezRodriguezPereiraHerrmannetal.2021, author = {Ram{\´i}rez-Rodr{\´i}guez, Gloria Bel{\´e}n and Pereira, Ana Rita and Herrmann, Marietta and Hansmann, Jan and Delgado-L{\´o}pez, Jos{\´e} Manuel and Sprio, Simone and Tampieri, Anna and Sandri, Monica}, title = {Biomimetic mineralization promotes viability and differentiation of human mesenchymal stem cells in a perfusion bioreactor}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {3}, issn = {1422-0067}, doi = {10.3390/ijms22031447}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285804}, year = {2021}, abstract = {In bone tissue engineering, the design of 3D systems capable of recreating composition, architecture and micromechanical environment of the native extracellular matrix (ECM) is still a challenge. While perfusion bioreactors have been proposed as potential tool to apply biomechanical stimuli, its use has been limited to a low number of biomaterials. In this work, we propose the culture of human mesenchymal stem cells (hMSC) in biomimetic mineralized recombinant collagen scaffolds with a perfusion bioreactor to simultaneously provide biochemical and biophysical cues guiding stem cell fate. The scaffolds were fabricated by mineralization of recombinant collagen in the presence of magnesium (RCP.MgAp). The organic matrix was homogeneously mineralized with apatite nanocrystals, similar in composition to those found in bone. X-Ray microtomography images revealed isotropic porous structure with optimum porosity for cell ingrowth. In fact, an optimal cell repopulation through the entire scaffolds was obtained after 1 day of dynamic seeding in the bioreactor. Remarkably, RCP.MgAp scaffolds exhibited higher cell viability and a clear trend of up-regulation of osteogenic genes than control (non-mineralized) scaffolds. Results demonstrate the potential of the combination of biomimetic mineralization of recombinant collagen in presence of magnesium and dynamic culture of hMSC as a promising strategy to closely mimic bone ECM.}, language = {en} } @article{SchlechtThienWolfetal.2021, author = {Schlecht, Anja and Thien, Adrian and Wolf, Julian and Prinz, Gabriele and Agostini, Hansj{\"u}rgen and Schlunck, G{\"u}nther and Wieghofer, Peter and Boneva, Stefaniya and Lange, Clemens}, title = {Immunosenescence in choroidal neovascularization (CNV) — Transcriptional profiling of na{\"i}ve and CNV-associated retinal myeloid cells during aging}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {24}, issn = {1422-0067}, doi = {10.3390/ijms222413318}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284342}, year = {2021}, abstract = {Immunosenescence is considered a possible factor in the development of age-related macular degeneration and choroidal neovascularization (CNV). However, age-related changes of myeloid cells (MCs), such as microglia and macrophages, in the healthy retina or during CNV formation are ill-defined. In this study, Cx3cr1-positive MCs were isolated by fluorescence-activated cell sorting from six-week (young) and two-year-old (old) Cx3cr1\(^{GFP/+}\) mice, both during physiological aging and laser-induced CNV development. High-throughput RNA-sequencing was performed to define the age-dependent transcriptional differences in MCs during physiological aging and CNV development, complemented by immunohistochemical characterization and the quantification of MCs, as well as CNV size measurements. These analyses revealed that myeloid cells change their transcriptional profile during both aging and CNV development. In the steady state, senescent MCs demonstrated an upregulation of factors contributing to cell proliferation and chemotaxis, such as Cxcl13 and Cxcl14, as well as the downregulation of microglial signature genes. During CNV formation, aged myeloid cells revealed a significant upregulation of angiogenic factors such as Arg1 and Lrg1 concomitant with significantly enlarged CNV and an increased accumulation of MCs in aged mice in comparison to young mice. Future studies need to clarify whether this observation is an epiphenomenon or a causal relationship to determine the role of immunosenescence in CNV formation.}, language = {en} } @article{SedaghatHamedaniRebsElBattrawyetal.2021, author = {Sedaghat-Hamedani, Farbod and Rebs, Sabine and El-Battrawy, Ibrahim and Chasan, Safak and Krause, Tobias and Haas, Jan and Zhong, Rujia and Liao, Zhenxing and Xu, Qiang and Zhou, Xiaobo and Akin, Ibrahim and Zitron, Edgar and Frey, Norbert and Streckfuss-B{\"o}meke, Katrin and Kayvanpour, Elham}, title = {Identification of SCN5a p.C335R variant in a large family with dilated cardiomyopathy and conduction disease}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {23}, issn = {1422-0067}, doi = {10.3390/ijms222312990}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284442}, year = {2021}, abstract = {Introduction: Familial dilated cardiomyopathy (DCM) is clinically variable and has been associated with mutations in more than 50 genes. Rapid improvements in DNA sequencing have led to the identification of diverse rare variants with unknown significance (VUS), which underlines the importance of functional analyses. In this study, by investigating human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we evaluated the pathogenicity of the p.C335R sodium voltage-gated channel alpha subunit 5 (SCN5a) variant in a large family with familial DCM and conduction disease. Methods: A four-generation family with autosomal dominant familial DCM was investigated. Next-generation sequencing (NGS) was performed in all 16 family members. Clinical deep phenotyping, including endomyocardial biopsy, was performed. Skin biopsies from two patients and one healthy family member were used to generate human-induced pluripotent stem cells (iPSCs), which were then differentiated into cardiomyocytes. Patch-clamp analysis with Xenopus oocytes and iPSC-CMs were performed. Results: A SCN5a variant (c.1003T>C; p.C335R) could be detected in all family members with DCM or conduction disease. A novel truncating TTN variant (p.Ser24998LysfsTer28) could also be identified in two family members with DCM. Family members with the SCN5a variant (p.C335R) showed significantly longer PQ and QRS intervals and lower left ventricular ejection fractions (LV-EF). All four patients who received CRT-D were non-responders. Electrophysiological analysis with Xenopus oocytes showed a loss of function in SCN5a p.C335R. Na\(^+\) channel currents were also reduced in iPSC-CMs from DCM patients. Furthermore, iPSC-CM with compound heterozygosity (SCN5a p.C335R and TTNtv) showed significant dysregulation of sarcomere structures, which may be contributed to the severity of the disease and earlier onset of DCM. Conclusion: The SCN5a p.C335R variant is causing a loss of function of peak INa in patients with DCM and cardiac conduction disease. The co-existence of genetic variants in channels and structural genes (e.g., SCN5a p.C335R and TTNtv) increases the severity of the DCM phenotype.}, language = {en} }