@article{CharbonnierBaradaranSatoetal.2019, author = {Charbonnier, Baptiste and Baradaran, Aslan and Sato, Daisuke and Alghamdi, Osama and Zhang, Zishuai and Zhang, Yu-Ling and Gbureck, Uwe and Gilardino, Mirko and Harvey, Edward and Makhoul, Nicholas and Barralet, Jake}, title = {Material-Induced Venosome-Supported Bone Tubes}, series = {Advanced Science}, volume = {6}, journal = {Advanced Science}, doi = {10.1002/advs.201900844}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222318}, year = {2019}, abstract = {The development of alternatives to vascular bone grafts, the current clinical standard for the surgical repair of large segmental bone defects still today represents an unmet medical need. The subcutaneous formation of transplantable bone has been successfully achieved in scaffolds axially perfused by an arteriovenous loop (AVL) and seeded with bone marrow stromal cells or loaded with inductive proteins. Although demonstrating clinical potential, AVL-based approaches involve complex microsurgical techniques and thus are not in widespread use. In this study, 3D-printed microporous bioceramics, loaded with autologous total bone marrow obtained by needle aspiration, are placed around and next to an unoperated femoral vein for 8 weeks to assess the effect of a central flow-through vein on bone formation from marrow in a subcutaneous site. A greater volume of new bone tissue is observed in scaffolds perfused by a central vein compared with the nonperfused negative control. These analyses are confirmed and supplemented by calcified and decalcified histology. This is highly significant as it indicates that transplantable vascularized bone can be grown using dispensable vein and marrow tissue only. This is the first report illustrating the capacity of an intrinsic vascularization by a single vein to support ectopic bone formation from untreated marrow.}, language = {en} } @article{KirschHassinBaerMatthiesetal.2018, author = {Kirsch, Anna Dalal and Hassin-Baer, Sharon and Matthies, Cordula and Volkmann, Jens and Steigerwald, Frank}, title = {Anodic versus cathodic neurostimulation of the subthalamic nucleus: A randomized-controlled study of acute clinical effects}, series = {Parkinsonism and Related Disorders}, volume = {55}, journal = {Parkinsonism and Related Disorders}, doi = {10.1016/j.parkreldis.2018.05.015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325820}, pages = {61-67}, year = {2018}, abstract = {Introduction Stimulation settings of deep brain stimulation (DBS) have evolved empirically within a limited parameter space dictated by first generation devices. There is a need for controlled clinical studies, which evaluate efficacy and safety of established programming practice against novel programming options provided by modern neurostimulation devices. Methods Here, we tested a polarity reversal from conventional monopolar cathodic to anodic stimulation in an acute double-blind, randomized, cross-over study in patients with PD implanted with bilateral STN DBS. The primary outcome measure was the difference between efficacy and side-effect thresholds (current amplitude, mA) in a monopolar review and the severity of motor symptoms (as assessed by MDS-UPDRS III ratings) after 30 min of continuous stimulation in the medication off-state. Results Effect and side effect thresholds were significantly higher with anodic compared to cathodic stimulation (3.36 ± 1.58 mA vs. 1.99 ± 1.37 mA; 6.05 ± 1.52 mA vs. 4.15 ± 1.13 mA; both p < 0.0001). However, using a predefined amplitude of 0.5 mA below the respective adverse effect threshold, blinded MDS-UPDRS-III-ratings were significantly lower with anodic stimulation (anodic: median 17 [min: 12, max: 25]; cathodic: 23 [12, 37]; p < 0.005). Conclusion Effective anodic stimulation requires a higher charge injection into the tissue, but may provide a better reduction of off-period motor symptoms within the individual therapeutic window. Therefore, a programming change to anodic stimulation may be considered in patients suffering from residual off-period motor symptoms of PD despite reaching the adverse effect threshold of cathodic stimulation in the subthalamic nucleus.}, language = {en} } @article{CounsellKardaDiazetal.2018, author = {Counsell, John R. and Karda, Rajvinder and Diaz, Juan Antiano and Carey, Louise and Wiktorowicz, Tatiana and Buckley, Suzanne M. K. and Ameri, Shima and Ng, Joanne and Baruteau, Julien and Almeida, Filipa and de Silva, Rohan and Simone, Roberto and Lugar{\`a}, Eleonora and Lignani, Gabriele and Lindemann, Dirk and Rethwilm, Axel and Rahim, Ahad A. and Waddington, Simon N. and Howe, Steven J.}, title = {Foamy Virus Vectors Transduce Visceral Organs and Hippocampal Structures following In Vivo Delivery to Neonatal Mice}, series = {Molecular Therapy: Nucleic Acids}, volume = {12}, journal = {Molecular Therapy: Nucleic Acids}, doi = {10.1016/j.omtn.2018.07.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223379}, pages = {626-634}, year = {2018}, abstract = {Viral vectors are rapidly being developed for a range of applications in research and gene therapy. Prototype foamy virus (PFV) vectors have been described for gene therapy, although their use has mainly been restricted to ex vivo stem cell modification. Here we report direct in vivo transgene delivery with PFV vectors carrying reporter gene constructs. In our investigations, systemic PFV vector delivery to neonatal mice gave transgene expression in the heart, xiphisternum, liver, pancreas, and gut, whereas intracranial administration produced brain expression until animals were euthanized 49 days post-transduction. Immunostaining and confocal microscopy analysis of injected brains showed that transgene expression was highly localized to hippocampal architecture despite vector delivery being administered to the lateral ventricle. This was compared with intracranial biodistribution of lentiviral vectors and adeno-associated virus vectors, which gave a broad, non-specific spread through the neonatal mouse brain without regional localization, even when administered at lower copy numbers. Our work demonstrates that PFV can be used for neonatal gene delivery with an intracranial expression profile that localizes to hippocampal neurons, potentially because of the mitotic status of the targeted cells, which could be of use for research applications and gene therapy of neurological disorders.}, language = {en} } @article{ArgyrousideNijsLagattaetal.2019, author = {Argyrousi, Elentina K. and de Nijs, Laurence and Lagatta, Davi C. and Schl{\"u}tter, Anna and Weidner, Magdalena T. and Z{\"o}ller, Johanna and van Goethem, Nick P. and Joca, S{\^a}mia R. L. and van den Hove, Daniel L. A. and Prickaerts, Jos}, title = {Effects of DNA methyltransferase inhibition on pattern separation performance in mice}, series = {Neurobiology of Learning and Memory}, volume = {159}, journal = {Neurobiology of Learning and Memory}, doi = {https://doi.org/10.1016/j.nlm.2019.02.003}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221226}, pages = {6-15}, year = {2019}, abstract = {Enhancement of synaptic plasticity through changes in neuronal gene expression is a prerequisite for improved cognitive performance. Moreover, several studies have shown that DNA methylation is able to affect the expression of (e.g. plasticity) genes that are important for several cognitive functions. In this study, the effect of the DNA methyltransferase (DNMT) inhibitor RG108 was assessed on object pattern separation (OPS) task in mice. In addition, its effect on the expression of target genes was monitored. Administration of RG108 before the test led to a short-lasting, dose-dependent increase in pattern separation memory that was not present anymore after 48 h. Furthermore, treatment with RG108 did not enhance long-term memory of the animals when tested after a 24 h inter-trial interval in the same task. At the transcriptomic level, acute treatment with RG108 was accompanied by increased expression of Bdnf1, while expression of Bdnf4, Bdnf9, Gria1 and Hdac2 was not altered within 1 h after treatment. Methylation analysis of 14 loci in the promoter region of Bdnf1 revealed a counterintuitive increase in the levels of DNA methylation at three CpG sites. Taken together, these results indicate that acute administration of RG108 has a short-lasting pro-cognitive effect on object pattern separation that could be explained by increased Bdnf1 expression. The observed increase in Bdnf1 methylation suggests a complex interplay between Bdnf methylation-demethylation that promotes Bdnf1 expression and associated cognitive performance. Considering that impaired pattern separation could constitute the underlying problem of a wide range of mental and cognitive disorders, pharmacological agents including DNA methylation inhibitors that improve pattern separation could be compelling targets for the treatment of these disorders. In that respect, future studies are needed in order to determine the effect of chronic administration of such agents.}, language = {en} } @article{FigelBrinkmannBuffetal.2019, author = {Figel, Benedikt and Brinkmann, Leonie and Buff, Christine and Heitmann, Carina Y. and Hofmann, David and Bruchmann, Maximilian and Becker, Michael P. I. and Herrmann, Martin J. and Straube, Thomas}, title = {Phasic amygdala and BNST activation during the anticipation of temporally unpredictable social observation in social anxiety disorder patients}, series = {NeuroImage: Clinical}, volume = {22}, journal = {NeuroImage: Clinical}, doi = {10.1016/j.nicl.2019.101735}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228071}, year = {2019}, abstract = {Anticipation of potentially threatening social situations is a key process in social anxiety disorder (SAD). In other anxiety disorders, recent research of neural correlates of anticipation of temporally unpredictable threat suggests a temporally dissociable involvement of amygdala and bed nucleus of the stria terminalis (BNST) with phasic amygdala responses and sustained BNST activation. However, the temporal profile of amygdala and BNST responses during temporal unpredictability of threat has not been investigated in patients suffering from SAD. We used functional magnetic resonance imaging (fMRI) to investigate neural activation in the central nucleus of the amygdala (CeA) and the BNST during anticipation of temporally unpredictable aversive (video camera observation) relative to neutral (no camera observation) events in SAD patients compared to healthy controls (HC). For the analysis of fMRI data, we applied two regressors (phasic/sustained) within the same model to detect temporally dissociable brain responses. The aversive condition induced increased anxiety in patients compared to HC. SAD patients compared to HC showed increased phasic activation in the CeA and the BNST for anticipation of aversive relative to neutral events. SAD patients as well as HC showed sustained activity alterations in the BNST for aversive relative to neutral anticipation. No differential activity during sustained threat anticipation in SAD patients compared to HC was found. Taken together, our study reveals both CeA and BNST involvement during threat anticipation in SAD patients. The present results point towards potentially SAD-specific threat processing marked by elevated phasic but not sustained CeA and BNST responses when compared to HC.}, language = {en} } @article{GodelPhamKeleetal.2019, author = {Godel, Tim and Pham, Mirko and Kele, Henrich and Kronlage, Moritz and Schwarz, Daniel and Brun{\´e}e, Merle and Heiland, Sabine and Bendszus, Martin and B{\"a}umer, Philipp}, title = {Diffusion tensor imaging in anterior interosseous nerve syndrome - functional MR Neurography on a fascicular level}, series = {NeuroImage: Clinical}, volume = {21}, journal = {NeuroImage: Clinical}, doi = {10.1016/j.nicl.2019.101659}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233061}, year = {2019}, abstract = {Purpose By applying diffusor tensor imaging (DTI) in patients with anterior interosseous nerve syndrome (AINS), this proof of principle study aims to quantify the extent of structural damage of a peripheral nerve at the anatomical level of individual fascicles. Methods In this institutional review board approved prospective study 13 patients with spontaneous AINS were examined at 3 Tesla including a transversal T2-weighted turbo-spin-echo and a spin-echo echo-planar-imaging pulse sequence of the upper arm level. Calculations of quantitative DTI parameters including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) for median nerve lesion and non-lesion fascicles as well as ulnar and radial nerve were obtained. DTI values were compared to each other and to a previously published dataset of 58 healthy controls using one-way Analysis of Variance with Bonferroni correction and p-values <.05 were considered significant. Receiver operating characteristic (ROC) curves were performed to assess diagnostic accuracy. Results FA of median nerve lesion fascicles was decreased compared to median nerve non-lesion fascicles, ulnar nerve and radial nerve while MD, RD, and AD was increased (p < .001 for all parameters). Compared to median nerve values of healthy controls, lesion fascicles showed a significant decrease in FA while MD, RD, and AD was increased (p < .001 for all parameters). FA of median nerve non-lesion fascicles showed a weak significant decrease compared to healthy controls (p < .01) while there was no difference in MD, RD, and AD. ROC analyses revealed an excellent diagnostic accuracy of FA, MD and RD in the discrimination of median nerve lesion and non-lesion fascicles in AINS patients as well as in the discrimination of lesion fascicles and normative median nerve values of healthy controls. Conclusion By applying this functional MR Neurography technique in patients with AINS, this proof of principle study demonstrates that diffusion tensor imaging is feasible to quantify structural nerve injury at the anatomical level of individual fascicles.}, language = {en} } @article{GorlovaPavlovAnthonyetal.2019, author = {Gorlova, Anna and Pavlov, Dmitrii and Anthony, Daniel C. and Ponomarev, Eugene D. and Sambon, Margaux and Proshin, Andrey and Shafarevich, Igor and Babaevskaya, Diana and Lesch, Klaus-Peter and Bettendorff, Lucien and Strekalova, Tatyana}, title = {Thiamine and benfotiamine counteract ultrasound-induced aggression, normalize AMPA receptor expression and plasticity markers, and reduce oxidative stress in mice}, series = {Neuropharmacology}, volume = {156}, journal = {Neuropharmacology}, doi = {10.1016/j.neuropharm.2019.02.025}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227439}, year = {2019}, abstract = {The negative societal impacts associated with the increasing prevalence of violence and aggression is increasing, and, with this rise, is the need to understand the molecular and cellular changes that underpin ultrasound-induced aggressive behavior. In mice, stress-induced aggression is known to alter AMPA receptor subunit expression, plasticity markers, and oxidative stress within the brain. Here, we induced aggression in BALB/c mice using chronic ultrasound exposure and examined the impact of the psychoactive anti-oxidant compounds thiamine (vitamin B1), and its derivative benfotiamine, on AMPA receptor subunit expression, established plasticity markers, and oxidative stress. The administration of thiamine or benfotiamine (200 mg/kg/day) in drinking water decreased aggressive behavior following 3-weeks of ultrasound exposure and benfotiamine, reduced floating behavior in the swim test. The vehicle-treated ultrasound-exposed mice exhibited increases in protein carbonyl and total glutathione, altered AMPA receptor subunits expression, and decreased expression of plasticity markers. These ultrasound-induced effects were ameliorated by thiamine and benfotiamine treatment; in particular both antioxidants were able to reverse ultrasound-induced changes in GluA1 and GluA2 subunit expression, and, within the prefrontal cortex, significantly reversed the changes in protein carbonyl and polysialylated form of neural cell adhesion molecule (PSA-NCAM) expression levels. Benfotiamine was usually more efficacious than thiamine. Thus, the thiamine compounds were able to counteract ultrasound-induced aggression, which was accompanied by the normalization of markers that have been showed to be associated with ultrasound-induced aggression. These commonly used, orally-active compounds may have considerable potential for use in the control of aggression within the community. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.}, language = {en} } @article{VerheijenStevensGentieretal.2018, author = {Verheijen, Bert M. and Stevens, Jo A. A. and Gentier, Romina J. G. and van't Hekke, Christian D. and van den Hove, Daniel L. A. and Hermes, Denise J. H. P. and Steinbusch, Harry W. M. and Ruijter, Jan M. and Grimm, Marcus O. W. and Haupenthal, Viola J. and Annaert, Wim and Hartmann, Tobias and van Leeuwen, Fred W.}, title = {Paradoxical effects of mutant ubiquitin on Aβ plaque formation in an Alzheimer mouse model}, series = {Neurobiology of Aging}, volume = {72}, journal = {Neurobiology of Aging}, doi = {10.1016/j.neurobiolaging.2018.08.011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233185}, pages = {62-71}, year = {2018}, abstract = {Amyloid-β (Aβ) plaques are a prominent pathological hallmark of Alzheimer's disease (AD). They consist of aggregated Aβ peptides, which are generated through sequential proteolytic processing of the transmembrane protein amyloid precursor protein (APP) and several Aβ-associated factors. Efficient clearance of Aβ from the brain is thought to be important to prevent the development and progression of AD. The ubiquitin-proteasome system (UPS) is one of the major pathways for protein breakdown in cells and it has been suggested that impaired UPS-mediated removal of protein aggregates could play an important role in the pathogenesis of AD. To study the effects of an impaired UPS on Aβ pathology in vivo, transgenic APPSwe/PS1ΔE9 mice (APPPS1) were crossed with transgenic mice expressing mutant ubiquitin (UBB+1), a protein-based inhibitor of the UPS. Surprisingly, the APPPS1/UBB+1 crossbreed showed a remarkable decrease in Aβ plaque load during aging. Further analysis showed that UBB+1 expression transiently restored PS1-NTF expression and γ-secretase activity in APPPS1 mice. Concurrently, UBB+1 decreased levels of β-APP-CTF, which is a γ-secretase substrate. Although UBB+1 reduced Aβ pathology in APPPS1 mice, it did not improve the behavioral deficits in these animals.}, language = {en} } @article{HedrichMuellerBeckeretal.2018, author = {Hedrich, Rainer and Mueller, Thomas D. and Becker, Dirk and Marten, Irene}, title = {Structure and Function of TPC1 Vacuole SV Channel Gains Shape}, series = {Molecular Plant}, volume = {11}, journal = {Molecular Plant}, doi = {10.1016/j.molp.2018.03.017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228046}, pages = {764-775}, year = {2018}, abstract = {Plants and animals in endosomes operate TPC1/SV-type cation channels. All plants harbor at least one TPC1 gene. Although the encoded SV channel was firstly discovered in the plant vacuole membrane two decades ago, its biological function has remained enigmatic. Recently, the structure of a plant TPC1/SV channel protein was determined. Insights into the 3D topology has now guided site-directed mutation approaches, enabling structure-function analyses of TPC1/SV channels to shed new light on earlier findings. Fou2 plants carrying a hyperactive mutant form of TPC1 develop wounding stress phenotypes. Recent studies with fou2 and mutants that lack functional TPC1 have revealed atypical features in local and long-distance stress signaling, providing new access to the previously mysterious biology of this vacuolar cation channel type in planta.}, language = {en} } @article{MuehlemannZdziebloFriedrichetal.2018, author = {M{\"u}hlemann, Markus and Zdzieblo, Daniela and Friedrich, Alexandra and Berger, Constantin and Otto, Christoph and Walles, Heike and Koepsell, Hermann and Metzger, Marco}, title = {Altered pancreatic islet morphology and function in SGLT1 knockout mice on a glucose-deficient, fat-enriched diet}, series = {Molecular Metabolism}, volume = {13}, journal = {Molecular Metabolism}, doi = {10.1016/j.molmet.2018.05.011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224230}, pages = {67-76}, year = {2018}, abstract = {Objectives Glycemic control by medical treatment represents one therapeutic strategy for diabetic patients. The Na+-d-glucose cotransporter 1 (SGLT1) is currently of high interest in this context. SGLT1 is known to mediate glucose absorption and incretin secretion in the small intestine. Recently, inhibition of SGLT1 function was shown to improve postprandial hyperglycemia. In view of the lately demonstrated SGLT1 expression in pancreatic islets, we investigated if loss of SGLT1 affects islet morphology and function. Methods Effects associated with the loss of SGLT1 on pancreatic islet (cyto) morphology and function were investigated by analyzing islets of a SGLT1 knockout mouse model, that were fed a glucose-deficient, fat-enriched diet (SGLT1-/--GDFE) to circumvent the glucose-galactose malabsorption syndrome. To distinguish diet- and Sglt1-/--dependent effects, wildtype mice on either standard chow (WT-SC) or the glucose-free, fat-enriched diet (WT-GDFE) were used as controls. Feeding a glucose-deficient, fat-enriched diet further required the analysis of intestinal SGLT1 expression and function under diet-conditions. Results Consistent with literature, our data provide evidence that small intestinal SGLT1 mRNA expression and function is regulated by nutrition. In contrast, pancreatic SGLT1 mRNA levels were not affected by the applied diet, suggesting different regulatory mechanisms for SGLT1 in diverse tissues. Morphological changes such as increased islet sizes and cell numbers associated with changes in proliferation and apoptosis and alterations of the β- and α-cell population are specifically observed for pancreatic islets of SGLT1-/--GDFE mice. Glucose stimulation revealed no insulin response in SGLT1-/--GDFE mice while WT-GDFE mice displayed only a minor increase of blood insulin. Irregular glucagon responses were observed for both, SGLT1-/--GDFE and WT-GDFE mice. Further, both animal groups showed a sustained release of GLP-1 compared to WT-SC controls. Conclusion Loss or impairment of SGLT1 results in abnormal pancreatic islet (cyto)morphology and disturbed islet function regarding the insulin or glucagon release capacity from β- or α-cells, respectively. Consequently, our findings propose a new, additional role for SGLT1 maintaining proper islet structure and function.}, language = {en} }