@article{JunGholamiSongetal.2014, author = {Jun, Kyong-Hwa and Gholami, Spedideh and Song, Tae-Jin and Au, Joyce and Haddad, Dana and Carson, Joshua and Chen, Chun-Hao and Mojica, Kelly and Zanzonico, Pat and Chen, Nanhai G. and Zhang, Qian and Szalay, Aladar and Fong, Yuman}, title = {A novel oncolytic viral therapy and imaging technique for gastric cancer using a genetically engineered vaccinia virus carrying the human sodium iodide symporter}, series = {Journal of Experimental \& Clinical Cancer Research}, volume = {33}, journal = {Journal of Experimental \& Clinical Cancer Research}, number = {2}, issn = {1756-9966}, doi = {10.1186/1756-9966-33-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117716}, year = {2014}, abstract = {Background: Gastric cancers have poor overall survival despite recent advancements in early detection methods, endoscopic resection techniques, and chemotherapy treatments. Vaccinia viral therapy has had promising therapeutic potential for various cancers and has a great safety profile. We investigated the therapeutic efficacy of a novel genetically-engineered vaccinia virus carrying the human sodium iodide symporter (hNIS) gene, GLV-1 h153, on gastric cancers and its potential utility for imaging with Tc-99m pertechnetate scintigraphy and I-124 positron emission tomography (PET). Methods: GLV-1 h153 was tested against five human gastric cancer cell lines using cytotoxicity and standard viral plaque assays. In vivo, subcutaneous flank tumors were generated in nude mice with human gastric cancer cells, MKN-74. Tumors were subsequently injected with either GLV-1 h153 or PBS and followed for tumor growth. Tc-99m pertechnetate scintigraphy and I-124 microPET imaging were performed. Results: GFP expression, a surrogate for viral infectivity, confirmed viral infection by 24 hours. At a multiplicity of infection (MOI) of 1, GLV-1 h153 achieved > 90\% cytotoxicity in MNK-74, OCUM-2MD3, and AGS over 9 days, and >70\% cytotoxicity in MNK-45 and TMK-1. In vivo, GLV-1 h153 was effective in treating xenografts (p < 0.001) after 2 weeks of treatment. GLV-1 h153-infected tumors were readily imaged by Tc-99m pertechnetate scintigraphy and I-124 microPET imaging 2 days after treatment. Conclusions: GLV-1 h153 is an effective oncolytic virus expressing the hNIS protein that can efficiently regress gastric tumors and allow deep-tissue imaging. These data encourages its continued investigation in clinical settings.}, language = {en} } @article{SchrammFrauneNaumannetal.2011, author = {Schramm, Sabine and Fraune, Johanna and Naumann, Ronald and Hernandez-Hernandez, Abrahan and H{\"o}{\"o}g, Christer and Cooke, Howard J. and Alsheimer, Manfred and Benavente, Ricardo}, title = {A Novel Mouse Synaptonemal Complex Protein Is Essential for Loading of Central Element Proteins, Recombination, and Fertility}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68895}, year = {2011}, abstract = {The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE-specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE-specific proteins, which in turn would promote synapsis between homologous chromosomes.}, subject = {Maus}, language = {en} } @article{HofgaardJodalBommertetal.2012, author = {Hofgaard, Peter O. and Jodal, Henriette C. and Bommert, Kurt and Huard, Bertrand and Caers, Jo and Carlsen, Harald and Schwarzer, Rolf and Sch{\"u}nemann, Nicole and Jundt, Franziska and Lindeberg, Mona M. and Bogen, Bjarne}, title = {A Novel Mouse Model for Multiple Myeloma (MOPC315.BM) That Allows Noninvasive Spatiotemporal Detection of Osteolytic Disease}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0051892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131117}, pages = {e51892}, year = {2012}, abstract = {Multiple myeloma (MM) is a lethal human cancer characterized by a clonal expansion of malignant plasma cells in bone marrow. Mouse models of human MM are technically challenging and do not always recapitulate human disease. Therefore, new mouse models for MM are needed. Mineral-oil induced plasmacytomas (MOPC) develop in the peritoneal cavity of oil-injected BALB/c mice. However, MOPC typically grow extramedullary and are considered poor models of human MM. Here we describe an in vivo-selected MOPC315 variant, called MOPC315.BM, which can be maintained in vitro. When injected i.v. into BALB/c mice, MOPC315.BM cells exhibit tropism for bone marrow. As few as 10\(^4\) MOPC315.BM cells injected i.v. induced paraplegia, a sign of spinal cord compression, in all mice within 3-4 weeks. MOPC315.BM cells were stably transfected with either firefly luciferase (MOPC315.BM.Luc) or DsRed (MOPC315.BM.DsRed) for studies using noninvasive imaging. MOPC315.BM.Luc cells were detected in the tibiofemoral region already 1 hour after i.v. injection. Bone foci developed progressively, and as of day 5, MM cells were detected in multiple sites in the axial skeleton. Additionally, the spleen (a hematopoietic organ in the mouse) was invariably affected. Luminescent signals correlated with serum myeloma protein concentration, allowing for easy tracking of tumor load with noninvasive imaging. Affected mice developed osteolytic lesions. The MOPC315.BM model employs a common strain of immunocompetent mice (BALB/c) and replicates many characteristics of human MM. The model should be suitable for studies of bone marrow tropism, development of osteolytic lesions, drug testing, and immunotherapy in MM.}, language = {en} } @article{ElabyadTerekhovLohretal.2020, author = {Elabyad, Ibrahim A. and Terekhov, Maxim and Lohr, David and Stefanescu, Maria R. and Baltes, Steffen and Schreiber, Laura M.}, title = {A Novel Mono-surface Antisymmetric 8Tx/16Rx Coil Array for Parallel Transmit Cardiac MRI in Pigs at 7T}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-020-59949-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229436}, year = {2020}, abstract = {A novel mono-surface antisymmetric 16-element transmit/receive (Tx/Rx) coil array was designed, simulated, constructed, and tested for cardiac magnetic resonance imaging (cMRI) in pigs at 7T. The cardiac array comprised of a mono-surface 16-loops with two central elements arranged antisymmetrically and flanked by seven elements on either side. The array was configured for parallel transmit (pTx) mode to have an eight channel transmit and 16-channel receive (8Tx/16Rx) coil array. Electromagnetic (EM) simulations, bench-top measurements, phantom, and MRI experiments with two pig cadavers (68 and 46 kg) were performed. Finally, the coil was used in pilot in-vivo measurements with a 60 kg pig. Flip angle (FA), geometry factor (g-factor), signal-to-noise ratio (SNR) maps, and high-resolution cardiac images were acquired with an in-plane resolution of 0.6 mm x 0.6 mm (in-vivo) and 0.3 mm x 0.3 mm (ex-vivo). The mean g-factor over the heart was 1.26 (R = 6). Static phase B-1(+) shimming in a pig body phantom with the optimal phase vectors makes possible to improve the B-1(+) homogeneity by factor > 2 and transmit efficiency by factor > 3 compared to zero phases (before RF shimming). Parallel imaging performed in the in-vivo measurements demonstrated well preserved diagnostic quality of the resulting images at acceleration factors up to R = 6. The described hardware design can be adapted for arrays optimized for animals and humans with a larger number of elements (32-64) while maintaining good decoupling for various MRI applications at UHF (e.g., cardiac, head, and spine).}, language = {en} } @article{GhasemiLatifiPourhashemi2022, author = {Ghasemi, Marziye and Latifi, Hooman and Pourhashemi, Mehdi}, title = {A novel method for detecting and delineating coppice trees in UAV images to monitor tree decline}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {23}, issn = {2072-4292}, doi = {10.3390/rs14235910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297258}, year = {2022}, abstract = {Monitoring tree decline in arid and semi-arid zones requires methods that can provide up-to-date and accurate information on the health status of the trees at single-tree and sample plot levels. Unmanned Aerial Vehicles (UAVs) are considered as cost-effective and efficient tools to study tree structure and health at small scale, on which detecting and delineating tree crowns is the first step to extracting varied subsequent information. However, one of the major challenges in broadleaved tree cover is still detecting and delineating tree crowns in images. The frequent dominance of coppice structure in degraded semi-arid vegetation exacerbates this problem. Here, we present a new method based on edge detection for delineating tree crowns based on the features of oak trees in semi-arid coppice structures. The decline severity in individual stands can be analyzed by extracting relevant information such as texture from the crown area. Although the method presented in this study is not fully automated, it returned high performances including an F-score = 0.91. Associating the texture indices calculated in the canopy area with the phenotypic decline index suggested higher correlations of the GLCM texture indices with tree decline at the tree level and hence a high potential to be used for subsequent remote-sensing-assisted tree decline studies.}, language = {en} } @article{DirscherlDietzKneiseletal.2021, author = {Dirscherl, Mariel and Dietz, Andreas J. and Kneisel, Christof and Kuenzer, Claudia}, title = {A novel method for automated supraglacial lake mapping in Antarctica using Sentinel-1 SAR imagery and deep learning}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {2}, issn = {2072-4292}, doi = {10.3390/rs13020197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222998}, year = {2021}, abstract = {Supraglacial meltwater accumulation on ice sheets can be a main driver for accelerated ice discharge, mass loss, and global sea-level-rise. With further increasing surface air temperatures, meltwater-induced hydrofracturing, basal sliding, or surface thinning will cumulate and most likely trigger unprecedented ice mass loss on the Greenland and Antarctic ice sheets. While the Greenland surface hydrological network as well as its impacts on ice dynamics and mass balance has been studied in much detail, Antarctic supraglacial lakes remain understudied with a circum-Antarctic record of their spatio-temporal development entirely lacking. This study provides the first automated supraglacial lake extent mapping method using Sentinel-1 synthetic aperture radar (SAR) imagery over Antarctica and complements the developed optical Sentinel-2 supraglacial lake detection algorithm presented in our companion paper. In detail, we propose the use of a modified U-Net for semantic segmentation of supraglacial lakes in single-polarized Sentinel-1 imagery. The convolutional neural network (CNN) is implemented with residual connections for optimized performance as well as an Atrous Spatial Pyramid Pooling (ASPP) module for multiscale feature extraction. The algorithm is trained on 21,200 Sentinel-1 image patches and evaluated in ten spatially or temporally independent test acquisitions. In addition, George VI Ice Shelf is analyzed for intra-annual lake dynamics throughout austral summer 2019/2020 and a decision-level fused Sentinel-1 and Sentinel-2 maximum lake extent mapping product is presented for January 2020 revealing a more complete supraglacial lake coverage (~770 km\(^2\)) than the individual single-sensor products. Classification results confirm the reliability of the proposed workflow with an average Kappa coefficient of 0.925 and a F\(_1\)-score of 93.0\% for the supraglacial water class across all test regions. Furthermore, the algorithm is applied in an additional test region covering supraglacial lakes on the Greenland ice sheet which further highlights the potential for spatio-temporal transferability. Future work involves the integration of more training data as well as intra-annual analyses of supraglacial lake occurrence across the whole continent and with focus on supraglacial lake development throughout a summer melt season and into Antarctic winter.}, language = {en} } @article{GavvovidisRostTrimbornetal.2012, author = {Gavvovidis, Ioannis and Rost, Isabell and Trimborn, Marc and Kaiser, Frank J. and Purps, Josephine and Wiek, Konstanze and Haneberg, Helmut and Neitzel, Heidemarie and Schindler, Detlev}, title = {A Novel MCPH1 Isoform Complements the Defective Chromosome Condensation of Human MCPH1-Deficient Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75050}, year = {2012}, abstract = {Biallelic mutations in MCPH1 cause primary microcephaly (MCPH) with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL) and a second transcript lacking the six 39 exons (MCPH1De9-14). Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1De9-14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.}, subject = {MCPH1}, language = {en} } @article{JahnSchmidtMock2014, author = {Jahn, Martin T. and Schmidt, Katrin and Mock, Thomas}, title = {A novel cost effective and high-throughput isolation and identification method for marine microalgae}, series = {Plant Methods}, volume = {10}, journal = {Plant Methods}, number = {26}, doi = {10.1186/1746-4811-10-26}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121255}, year = {2014}, abstract = {BACKROUND: Marine microalgae are of major ecologic and emerging economic importance. Biotechnological screening schemes of microalgae for specific traits and laboratory experiments to advance our knowledge on algal biology and evolution strongly benefit from culture collections reflecting a maximum of the natural inter- and intraspecific diversity. However, standard procedures for strain isolation and identification, namely DNA extraction, purification, amplification, sequencing and taxonomic identification still include considerable constraints increasing the time required to establish new cultures. RESULTS: In this study, we report a cost effective and high-throughput isolation and identification method for marine microalgae. The throughput was increased by applying strain isolation on plates and taxonomic identification by direct PCR (dPCR) of phylogenetic marker genes in combination with a novel sequencing electropherogram based screening method to assess the taxonomic diversity and identity of the isolated cultures. For validation of the effectiveness of this approach, we isolated and identified a range of unialgal cultures from natural phytoplankton communities sampled in the Arctic Ocean. These cultures include the isolate of a novel marine Chlorophyceae strain among several different diatoms. CONCLUSIONS: We provide an efficient and effective approach leading from natural phytoplankton communities to isolated and taxonomically identified algal strains in only a few weeks. Validated with sensitive Arctic phytoplankton, this approach overcomes the constraints of standard molecular characterisation and establishment of unialgal cultures."}, language = {en} } @article{BornHolmbergGoernetetal.2014, author = {Born, Dennis-Peter and Holmberg, Hans-Christer and Goernet, Florian and Sperlich, Billy}, title = {A novel compression garment with adhesive silicone stripes improves repeated sprint performance - a multi-experimental approach on the underlying mechanisms}, series = {BMC Sports Science, Medicine and Rehabilitation}, volume = {6}, journal = {BMC Sports Science, Medicine and Rehabilitation}, number = {21}, issn = {2052-1847}, doi = {10.1186/2052-1847-6-21}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120591}, year = {2014}, abstract = {Background Repeated sprint performance is determined by explosive production of power, as well as rapid recovery between successive sprints, and there is evidence that compression garments and sports taping can improve both of these factors. Methods In each of two sub-studies, female athletes performed two sets of 30 30-m sprints (one sprint per minute), one set wearing compression garment with adhesive silicone stripes (CGSS) intended to mimic taping and the other with normal clothing, in randomized order. Sub-study 1 (n = 12) focused on cardio-respiratory, metabolic, hemodynamic and perceptual responses, while neuronal and biomechanical parameters were examined in sub-study 2 (n = 12). Results In both sub-studies the CGSS improved repeated sprint performance during the final 10 sprints (best P < 0.01, d = 0.61). None of the cardio-respiratory or metabolic variables monitored were altered by wearing this garment (best P = 0.06, d = 0.71). Also during the final 10 sprints, rating of perceived exertion by the upper leg muscles was reduced (P = 0.01, d = 1.1), step length increased (P = 0.01, d = 0.91) and activation of the m. rectus femoris elevated (P = 0.01, d = 1.24), while the hip flexion angle was lowered throughout the protocol (best P < 0.01, d = 2.28) and step frequency (best P = 0.34, d = 0.2) remained unaltered. Conclusion Although the physiological parameters monitored were unchanged, the CGSS appears to improve performance during 30 30-m repeated sprints by reducing perceived exertion and altering running technique.}, language = {en} } @article{BornHolmbergGoernertetal.2014, author = {Born, Dennis-Peter and Holmberg, Hans-Christer and Goernert, Florian and Sperlich, Billy}, title = {A novel compression garment with adhesive silicone stripes improves repeated sprint performance - a multi-experimental approach on the underlying mechanisms}, series = {BMC Sports Science, Medicine and Rehabilitation}, volume = {6}, journal = {BMC Sports Science, Medicine and Rehabilitation}, number = {21}, doi = {doi:10.1186/2052-1847-6-21}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116995}, year = {2014}, abstract = {Background Repeated sprint performance is determined by explosive production of power, as well as rapid recovery between successive sprints, and there is evidence that compression garments and sports taping can improve both of these factors. Methods In each of two sub-studies, female athletes performed two sets of 30 30-m sprints (one sprint per minute), one set wearing compression garment with adhesive silicone stripes (CGSS) intended to mimic taping and the other with normal clothing, in randomized order. Sub-study 1 (n = 12) focused on cardio-respiratory, metabolic, hemodynamic and perceptual responses, while neuronal and biomechanical parameters were examined in sub-study 2 (n = 12). Results In both sub-studies the CGSS improved repeated sprint performance during the final 10 sprints (best P < 0.01, d = 0.61). None of the cardio-respiratory or metabolic variables monitored were altered by wearing this garment (best P = 0.06, d = 0.71). Also during the final 10 sprints, rating of perceived exertion by the upper leg muscles was reduced (P = 0.01, d = 1.1), step length increased (P = 0.01, d = 0.91) and activation of the m. rectus femoris elevated (P = 0.01, d = 1.24), while the hip flexion angle was lowered throughout the protocol (best P < 0.01, d = 2.28) and step frequency (best P = 0.34, d = 0.2) remained unaltered. Conclusion Although the physiological parameters monitored were unchanged, the CGSS appears to improve performance during 30 30-m repeated sprints by reducing perceived exertion and altering running technique.}, language = {en} }