@phdthesis{BoltUlschmid2004, author = {Bolt-Ulschmid, Julia Katharina}, title = {Charakterisierung von Adenylatkinasen aus Plasmodium falciparum und Thioredoxinreduktase-assoziierten Proteinen aus Dipteren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10752}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In S{\"a}ugetieren existieren im wesentlichen zwei Abwehrsysteme gegen oxidativen Streß, in welchen die Glutathionreduktase (GR) und Thioredoxinreduktase (TrxR) Schl{\"u}sselenzyme sind. Ein einzelnes Gen der Taufliege, genannt dmtrxr-1, kodiert sowohl f{\"u}r die durch alternatives Splicing entstehende cytoplasmatische und mitochondriale Form der DmTrxR-1. Zum Teil innerhalb des dmtrxr-1-Gens findet sich auf dem Komplement{\"a}rstrang ein weiteres Gen, welches sniffer genannt wurde. In Kooperation wurde nachgewiesen, daß dieses Gen essentiell zur Verhinderung alterungsbedingter Neurodegeneration ist. Durch biochemische Charakterisierung konnte das rekombinant hergestellte Produkt dieses Gens in der vorliegenden Arbeit als Carbonylreduktase, ein zu den Kurzketten-Dehydrogenasen (short-chain dehydrogenases) geh{\"o}rendes Enzym, identifiziert werden. Sniffer weist das f{\"u}r Carbonylreduktasen typische Substratspektrum mit Phenanthrenequinone als bestem Substrat auf und wird von Flavonoiden wie Quercetin und Rutin sowie Hydroxymercuribenzoat gehemmt. In verschiedenen Ans{\"a}tzen konnten Kristalle des rekombinanten Proteins gewonnen werden, die inzwischen in Kooperation vermessen wurden und so zu einer Kristallstruktur mit einer Aufl{\"o}sung von 1,7 Angstr{\"o}m f{\"u}hrten. Durch diese Arbeiten konnte zum ersten Mal eine Verbindung zwischen einem charakterisierten Gen (snifffer), oxidativem Streß und neurodegenerativen Effekten auf molekularer Ebene nachgewiesen werden. Parasiten haben w{\"a}hrend ihres Lebenszyklus einen hohen Bedarf an Energie und sind abh{\"a}ngig von einer starken Syntheseleistung. Zur Bew{\"a}ltigung dieses Stresses ben{\"o}tigen sie hohe Aktivit{\"a}ten an Adenylatkinase (AK; ATP + AMP \&\#61683; 2 ADP) und GTP-AMP-Phosphotransferase (GAK; GTP + AMP \&\#61683; GDP + ADP). Beide Enzyme wurden in Blutstadien des Malariaparasiten Plasmodium falciparum identifiziert und die entsprechenden Gene der PfAK und PfGAK auf den Chromosomen 10 und 4 respektive lokalisiert. Klonierung und heterologe Expression in E. coli ergab enzymatisch aktive Proteine mit einer Gr{\"o}ße von 28,9 (PfAK), bzw. 28,0 kDa (PfGAK). Das rekombinante Protein der PfAK entspricht in seinen biochemischen Charakteristika denen der authentischen PfAK. Dies gilt auch f{\"u}r eine m{\"o}gliche Assoziation mit einem stabilisierenden Protein mit einem Molekulargewicht von ca. 70 kDa und der hohen Substratspezifit{\"a}t f{\"u}r das Monophosphat-Nukleotid AMP. Die Spezifit{\"a}t f{\"u}r das Triphosphat-Substrat ist weniger stringent. Das beste Triphosphat-Substrat ist ATP mit einem Vmax-Wert von 75 U/mg und einem kcat von 2800 min-1. Die Sequenz der PfAK enth{\"a}lt eine amphiphatische Helix, welche als notwendig f{\"u}r die Translokation zytosolischer Adenylatkinasen in den Intermembranraum der Mitochondrien beschrieben wurde. Die PfGAK bevorzugt GTP und AMP als Substrat (100 U/mg; kcat = 2800 min-1 bei 25°C) und zeigt als Besonderheit keine messbare Aktivit{\"a}t mit ATP. Im Gegensatz zu ihrem Ortholog im Menschen (AK3) enth{\"a}lt die Sequenz der PfGAK ein Zinkfinger-Motiv und bindet Eisenionen. Erste Immunfluoreszenz-Analysen lokalisieren die PfGAK in den Mitochondrien. PfAK und PfGAK werden von den Dinukleosid-Pentaphosphat-Verbindungen AP5A beziehungsweise GP5A gehemmt. Die Ki-Werte liegen mit ca. 0.2 µM ungef{\"a}hr 250-fach niedriger als die KM-Werte der entsprechenden Nukleotidsubstrate. Zur L{\"o}sung der vor allem im Rahmen einer rationalen Medikamentenentwicklung notwendigen Kristallstruktur des Zielmolek{\"u}ls konnten bereits Kristalle der PfGAK erhalten werden.}, subject = {Taufliege}, language = {de} } @phdthesis{Fischer2004, author = {Fischer, Matthias}, title = {Lokalisierung eines Ged{\"a}chtnisses bei Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8050}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Es konnte in dieser Arbeit gezeigt werden, daß das olfaktorische Kurzzeitged{\"a}chtnis von Drosophila melanogaster in den Pilzk{\"o}rpern lokalisiert ist. Zu Beginn dieser Doktorarbeit war bekannt, daß die Pilzk{\"o}rper notwendig f{\"u}r das Geruchsged{\"a}chtnis sind. Drei unabh{\"a}ngige Methoden der Ablation bzw. Ver{\"a}nderung der biochemischen Eigenschaften der Pilzk{\"o}rper hatten zu dem selben Ergebnis gef{\"u}hrt, daß funktionierende Pilzk{\"o}rper unentbehrlich f{\"u}r den Aufbau eines Geruchsged{\"a}chtnisses sind. Noch informativer als ein Experiment, in dem durch Zerst{\"o}rung einer Struktur eine Leistung unm{\"o}glich gemacht wird ist der umgekehrte Weg, der durch einen gewebespezifischen „rescue" die Leistung wiederherstellt. Dazu wurde in dieser Arbeit das wildtypische Allel des Gens rutabaga in rut-mutanten Fliegen mit Hilfe des Gal4/UAS-Systems ausschließlich in den Pilzk{\"o}rpern, bzw., im Gegenexperiment, nur außerhalb der Pilzk{\"o}rper zur Expression gebracht. rut kodiert f{\"u}r die Adenylatcyclase I, die mit synaptischer Plastizit{\"a}t bei Drosophila, Aplysia und M{\"a}usen in Verbindung gebracht wird. Man geht davon aus, daß synaptische Plastizit{\"a}t die molekulare Grundlage f{\"u}r Lernen und Ged{\"a}chtnis ist. Die AC I stellt cAMP her, dessen Menge und pr{\"a}zise Regulation die {\"U}bertragungsst{\"a}rke an Neuronen beeinflußt. Eine St{\"o}rung dieses Signalweges z. B. durch die rut-Mutation f{\"u}hrt zu einer Beeintr{\"a}chtigung des Ged{\"a}chtnisses bei Drosophila. rut wurde mit Hilfe des in Drosophila etablierten Gal4/UAS-Systems exprimiert: Der gewebespezifisch aktive Hefe-Transkriptionsfaktor Gal4 f{\"u}hrt dazu, daß das hinter einen Gal4-spezifischen UAS-Promotor klonierte wildtypische rut-Gen in denjenigen Zellen transkribiert wird, in denen der Transkriptionsfaktor vorhanden ist. Dies wurde in einer rut-Mutante durchgef{\"u}hrt, so daß in allen anderen Zellen keine funktionierende AC I vorhanden war. Die rut-abh{\"a}ngige synaptische Plastizit{\"a}t wurde damit ausschließlich auf die gew{\"u}nschten Regionen beschr{\"a}nkt. Das Expressionsmuster der Gal4-Linien wurde durch Immuncytochemie (Anti-Tau) sichtbar gemacht. Diese Fliegen wurden in einem klassischen Konditionierungsexperiment auf ihr Geruchs-Ged{\"a}chtnis untersucht. Dazu wurden einer Gruppe von Fliegen nacheinander 2 Ger{\"u}che pr{\"a}sentiert, von denen einer mit Elektroschocks gepaart war. Nach ca. 2 min konnten diese Fliegen sich f{\"u}r einen der beiden Ger{\"u}che entscheiden, die nun gleichzeitig aus 2 unterschiedlichen Richtungen dargeboten wurden. Je nach Lernleistung entschieden sich mehr oder weniger Fliegen f{\"u}r den vorher unbestraften Geruch. Es ergab sich, daß der Ort im Gehirn, an dem die wildtypische AC I exprimiert wurde, {\"u}ber die H{\"o}he des Ged{\"a}chtniswertes entschied: Die AC I ausschließlich in den Pilzk{\"o}rpern gew{\"a}hrte ein v{\"o}llig normales Ged{\"a}chtnis, wogegen die AC I außerhalb der Pilzk{\"o}rper das Ged{\"a}chtnis nicht gegen{\"u}ber der rut-Mutante verbessern konnte. Die Analyse der Expressionsverteilung von insgesamt 9 getesteten Fliegenlinien mißt {\"u}berdies dem \&\#61543;-Lobus des Pilzk{\"o}rpers eine besondere Bedeutung bei und l{\"a}ßt den Schluß zu, daß das hier untersuchte Ged{\"a}chtnis ausschließlich in den \&\#61543;-Loben lokalisiert ist. Dieses erfolgreiche rut-„rescue" - Experiment zeigt, daß rut-abh{\"a}ngige synaptische Plastizit{\"a}t ausschließlich in den Pilzk{\"o}rpern ausreichend f{\"u}r ein wildtypisches Ged{\"a}chtnis ist. Dieses Ergebnis vervollst{\"a}ndigt die Erkenntnisse von den Pilzk{\"o}rper-Ablationsexperimenten insofern, als nun die Aussage zutrifft, daß die Pilzk{\"o}rper notwendig und hinreichend f{\"u}r das olfaktorische Kurzzeitged{\"a}chtnis sind.}, language = {de} } @phdthesis{Schwenkert2005, author = {Schwenkert, Isabell}, title = {Phenotypic characterization of hangover at the neuromuscular junction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14977}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Ethanoltoleranz beruht vermutlich auf Ver{\"a}nderung in synaptischer Plastizit{\"a}t; da die Mechanismen, die zu dieser Anpassung der Synapsen f{\"u}hren, in hang-Mutanten offensichtlich defekt sind, war es Ziel dieser Arbeit zu erkl{\"a}ren, wie HANG zu synaptischer Plastizit{\"a}t beitr{\"a}gt. In diesem Zusammenhang war es besonders wichtig herauszufinden, in welchem neuronalen Prozeß HANG eine Rolle spielt. Antik{\"o}rperfarbungen gegen HANG zeigten, da das Protein in allen neuronalen Zellkernen larvaler und adulter Gehirne vorhanden ist. Gehirne der hangAE10 Mutante zeigen keine F{\"a}rbung, was best{\"a}tigt, da diese Tiere Nullmutanten f{\"u}r HANG sind. Eine genauere Analyse der Verteilung von HANG im Zellkern ergab, daß HANG in einem punktartigen Muster an bestimmten Stellen im Kern angereichert ist; diese HANG-Aggregate sind an der Innenseite der Kernmembran lokalisiert und colokalisieren nicht mit dem Chromatin. Auf der Basis dieser Ergebnissen wurde postuliert, daß HANG vermutlich an der Stabilisierung, Prozessierung oder dem Export von mRNAs beteiligt ist. Da synaptische Plastizit{\"a}t gut an den einzelnen Neuronen der neuromuskul{\"a}ren Synapse von Drosophila-Larven studiert werden kann, wurde die Morphologie der Motorneurone dritter Larven am Muskelpaar 6/7 des Segments A4 untersucht. Diese Untersuchungen zeigten, da Boutonanzahl und Axonl{\"a}nge in hangAE10-Larven um 40 \% erh{\"o}ht sind. Außerdem zeigen einige Boutons der hang-Mutanten eine abnormale, sanduhrf{\"o}rmige Form, was darauf hinweist, daß sie nach Initiation der Bouton-Teilung m{\"o}glicherweise in einem halb-separierten Zustand geblieben sind. Die Zunahme an Boutons in den Mutanten ist im wesentlichen auf eine Zunahme der Anzahl der Typ Ib-Boutons zur{\"u}ckzuf{\"u}hren. Die Analyse der Verteilung verschiedener synaptischer Marker in hangover-Mutanten ergab keine Hinweise auf Abnormalit{\"a}ten im Zytoskelett oder in der Ausbildung der pr{\"a}-und postsynaptischen Strukturen. Des weiteren ist die Anzahl der aktiven Zonen relativ zur Boutonoberfl{\"a}che nicht ver{\"a}ndert; da hang-Mutanten aber mehr synaptische Boutons pro synaptischem Terminal besitzen, kann man insgesamt von einer Zunahme der Anzahl der aktiven Zonen ausgehen. Die pr{\"a}synaptische Expression von HANG in den Mutanten rettet die erh{\"o}hte Boutonanzahl und die verl{\"a}ngerten Axone, was ebenfalls beweist, daß die beobachteten synaptischen Defekte auf das Fehlen von HANG und nicht auf Sekund{\"a}rmutationen zur{\"u}ckzuf{\"u}hren sind. Eine postsynaptische Expression der hangover cDNA in den Mutanten dagegen rettet den Ph{\"a}notyp nicht. Die Anzahl der synaptischen Boutons wird unter anderem durch cAMP-Levels bestimmt, welche somit synaptische Plastizit{\"a}t regeln. Da hang-Mutanten eine erh{\"o}hte Boutonanzahl aufweisen, f{\"u}hrte dies zu der Spekulation, daß der Ph{\"a}notyp dieser Mutanten m{\"o}glicherweise auf ver{\"a}nderte cAMPlevels zur{\"u}ckzuf{\"u}hren ist. Um dies zu {\"u}berpr{\"u}fen, wurde die Morphologie der neuromuskul{\"a}ren Synapsen von hangAE10-Larven mit denen von dnc1 verglichen, welche Defekte in der cAMP-Kaskade aufweisen. Einige Aspekte des Ph{\"a}notyps (z. B. die Zunahme der Boutonanzahl und das Verhaltnis von aktiven Zonen pro Boutonfl{\"a}che) sind sehr ¨ahnlich; jedoch unterscheiden sich die beiden Mutanten in anderen morphologischen Aspekten. Die Expression eines UAS-dnc-Transgens in hangover-Mutanten modifizierte den hang-Ph{\"a}notyp ebenfalls nicht. Auf der Basis der Ergebnisse dieser Arbeit wurde ein Modell f{\"u}r die Funktion von HANG erstellt, nach dem dieses Protein vermutlich am Isoform-spezifischen Spleißen bestimmter Transkripte beteiligt ist, deren Produkte f{\"u}r die synaptische Plastizit{\"a}t an der neuromuskul{\"a}ren Synapse ben{\"o}tigt werden.}, subject = {Taufliege}, language = {en} } @phdthesis{Schindelin2005, author = {Schindelin, Johannes}, title = {The standard brain of Drosophila melanogaster and its automatic segmentation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15518}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this thesis, I introduce the Virtual Brain Protocol, which facilitates applications of the Standard Brain of Drosophila melanogaster. By providing reliable and extensible tools for the handling of neuroanatomical data, this protocol simplifies and organizes the recurring tasks involved in these applications. It is demonstrated that this protocol can also be used to generate average brains, i.e. to combine recordings of several brains with the same features such that the common features are emphasized. One of the most important steps of the Virtual Insect Protocol is the aligning of newly recorded data sets with the Standard Brain. After presenting methods commonly applied in a biological or medical context to align two different recordings, it is evaluated to what extent this alignment can be automated. To that end, existing Image Processing techniques are assessed. I demonstrate that these techniques do not satisfy the requirements needed to guarantee sensible alignments between two brains. Then, I analyze what needs to be taken into account in order to formulate an algorithm which satisfies the needs of the protocol. In the last chapter, I derive such an algorithm using methods from Information Theory, which bases the technique on a solid mathematical foundation. I show how Bayesian Inference can be applied to enhance the results further. It is demonstrated that this approach yields good results on very noisy images, detecting apparent boundaries between structures. The same approach can be extended to take additional knowledge into account, e.g. the relative position of the anatomical structures and their shape. It is shown how this extension can be utilized to segment a newly recorded brain automatically.}, subject = {Taufliege}, language = {en} } @phdthesis{Masek2005, author = {Masek, Pavel}, title = {Odor intensity learning in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15546}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {It has been known for a long time that Drosophila can learn to discriminate not only between different odorants but also between different concentrations of the same odor. Olfactory associative learning has been described as a pairing between odorant and electric shock and since then, most of the experiments conducted in this respect have largely neglected the dual properties of odors: quality and intensity. For odorant-coupled short-term memory, a biochemical model has been proposed that mainly relies on the known cAMP signaling pathway. Mushroom bodies (MB) have been shown to be necessary and sufficient for this type of memory, and the MB-model of odor learning and short-term memory was established. Yet, theoretically, based on the MB-model, flies should not be able to learn concentrations if trained to the lower of the two concentrations in the test. In this thesis, I investigate the role of concentration-dependent learning, establishment of a concentration-dependent memory and their correlation to the standard two-odor learning as described by the MB-model. In order to highlight the difference between learning of quality and learning of intensity of the same odor I have tried to characterize the nature of the stimulus that is actually learned by the flies, leading to the conclusion that during the training flies learn all possible cues that are presented at the time. The type of the following test seems to govern the usage of the information available. This revealed a distinction between what flies learned and what is actually measured. Furthermore, I have shown that learning of concentration is associative and that it is symmetrical between high and low concentrations. I have also shown how the subjective quality perception of an odor changes with changing intensity, suggesting that one odor can have more than one scent. There is no proof that flies perceive a range of concentrations of one odorant as one (odor) quality. Flies display a certain level of concentration invariance that is limited and related to the particular concentration. Learning of concentration is relevant only to a limited range of concentrations within the boundaries of concentration invariance. Moreover, under certain conditions, two chemically distinct odorants could smell sufficiently similarly such, that they can be generalized between each other like if they would be of the same quality. Therefore, the abilities of the fly to identify the difference in quality or in intensity of the stimuli need to be distinguished. The way how the stimulus is analyzed and processed speaks in favor of a concept postulating the existence of two separated memories. To follow this concept, I have proposed a new form of memory called odor intensity memory (OIM), characterized it and compared it to other olfactory memories. OIM is independent of some members of the known cAMP signaling pathway and very likely forms the rutabaga-independent component of the standard two-odor memory. The rutabaga-dependent odor memory requires qualitatively different olfactory stimuli. OIM is revealed within the limits of concentration invariance where the memory test gives only sub-optimal performance for the concentration differences but discrimination of odor quality is not possible at all. Based on the available experimental tools, OIM seems to require the mushroom bodies the same as odor-quality memory but its properties are different. Flies can memorize the quality of several odorants at a given time but a newly formed memory of one odor interferes with the OIM stored before. In addition, the OIM lasts only 1 to 3 hours - much shorter than the odor-quality memory.}, subject = {Taufliege}, language = {en} } @phdthesis{Cruz2006, author = {Cruz, Alexandre Bettencourt da}, title = {Molecular and functional characterization of the swiss-cheese and olk mutants in Drosophila melanogaster : two approaches to killing neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In this thesis two genes involved in causing neurodegenerative phenotypes in Drosophila are described. olk (omb-like), a futsch allele, is a micotubule associated protein (MAP) which is homologous to MAP1B and sws (swiss cheese) a serine esterase of yet unknown function within the nervous system. The lack of either one of these genes causes progressive neurodegeneration in two different ways. The sws mutant is characterized by general degeneration of the adult nervous system, glial hyperwrapping and neuronal apoptosis. Deletion of NTE (neuropathy target esterase), the SWS homolog in vertebrates, has been shown to cause a similar pattern of progressive neural degeneration in mice. NTE reacts with organophosphates causing axonal degeneration in humans. Inhibition of vertebrate NTE is insufficient to induce paralyzing axonal degeneration, a reaction called "aging reaction" is necessary for the disease to set in. It is hypothesized that a second "non-esterase" function of NTE is responsible for this phenomenon. The biological function of SWS within the nervous system is still unknown. To characterize the function of this protein several transgenic fly lines expressing different mutated forms of SWS were established. The controlled expression of altered SWS protein with the GAL4/UAS system allowed the analysis of isolated parts of the protein that were altered in the respective constructs. The characterization of a possible non-esterase function was of particular interest in these experiments. One previously described aberrant SWS construct lacking the first 80 amino acids (SWS\&\#916;1-80) showed a deleterious, dominant effect when overexpressed and was used as a model for organophosphate (OP) intoxication. This construct retains part of its detrimental effect even without catalytically active serine esterase function. This strongly suggests that there is another characteristic to SWS that is not defined solely by its serine esterase activity. Experiments analyzing the lipid contents of sws mutant, wildtype (wt) and SWS overexpressing flies gave valuable insights into a possible biological function of SWS. Phosphatidylcholine, a major component of cell membranes, accumulates in sws mutants whereas it is depleted in SWS overexpressing flies. This suggests that SWS is involved in phosphatidylcholine regulation. The produced \&\#945;-SWS antibody made it possible to study the intracellular localization of SWS. Images of double stainings with ER (endoplasmic reticulum) markers show that SWS is in great part localized to the ER. This is consistent with findings of SWS/ NTE localization in yeast and mouse cells. The olk mutant also shows progressive neurodegeneration but it is more localized to the olfactory system and mushroom bodies. Regarding specific cell types it seemed that specifically the projection neurons (PNs) are affected. A behavioral phenotype consisting of poor olfactory memory compared to wt is also observed even before histologically visible neurodegeneration sets in. Considering that the projection neurons connect the antennal lobes to the mushroom bodies, widely regarded as the "learning center", this impairment was expected. Three mutants where identified (olk1-3) by complementation analysis with the previously known futschN94 allele and sequencing of the coding sequence of olk1 revealed a nonsense mutation early in the protein. Consistent with the predicted function of Futsch as a microtubule associated protein (MAP), abnormalities are most likely due to a defective microtubule network and defects in axonal transport. In histological sections a modified cytoskeletal network is observed and western blots confirm a difference in the amount of tubulin present in the olk1 mutant versus the wt. The elaboration of neuronal axons and dendrites is dependent on a functional cytoskeleton. Observation of transport processes in primary neural cultures derived from olk1 mutant flies also showed a reduction of mitochondrial transport. Interaction with the fragile X mental retardation gene (dfmr1) was observed with the olk mutant. A dfmr1/ olk1 double mutant shows an ameliorated phenotype compared to the olk1 single mutant. tau, another MAP gene, was also shown to be able to partially rescue the olk1 mutant.}, subject = {Taufliege}, language = {en} } @phdthesis{Ritze2007, author = {Ritze, Yvonne}, title = {Die Rolle des Neurotransmitters Serotonin bei der Entwicklung von Ethanolsensitivit{\"a}t und Toleranz in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26271}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Der Neurotransmitter Serotonin spielt ein Rolle bei der Entwicklung von Ethanoltoleranz und Alkoholismus. Die vorliegende Arbeit untersuchte die Funktion von Serotonin (5HT) im Bezug auf Ethanolsensitivit{\"a}t und Toleranz in Drosophila melanogaster. Pharmakologisch wurden die 5HT Konzentrationen durch F{\"u}ttern eines Vorl{\"a}ufers der 5HT Synthese kurzeitig erh{\"o}ht oder mit einem Syntheseinhibitor reduziert. Die Ver{\"a}nderung der 5HT Konzentrationen mittels dieser Pharmaka hatte jedoch keinen Einfluss auf die Entwicklung von Ethanolsensitivit{\"a}t oder Toleranz. 5HT wird durch den 5HT Transporter (SERT) aus dem synaptischen Spalt in die Pr{\"a}synapse wieder aufgenommen. Die kurzzeitige F{\"u}tterung des SERT Inhibitors Paroxetin f{\"u}hrt zu erh{\"o}hter Ethanolsensitivit{\"a}t und reduzierter Toleranz. Ein {\"a}hnlicher Ph{\"a}notyp wurde in der hypomorphen sert55 Mutante, die eine reduzierte dsert Expression aufweist, beobachtet. Dies legt nahe, dass kurz- wie langfristige Reduktion der SERT Funktion die Entwicklung einer vollst{\"a}ndigen Ethanoltoleranz verhindern. Folglich hat die Verl{\"a}ngerung der 5HT Signaltransduktion im synaptischen Spalt, nicht aber die allgemeine Erh{\"o}hung von 5HT Konzentrationen im Fliegengehirn einen Einfluss auf die Entwicklung von Ethanoltoleranz. Zur genauen Bestimmung der SERT Expression im adulten Gehirn der Fliege wurde ein Drosophila SERT (dSERT) Antik{\"o}rper hergestellt. Mit Hilfe dieses Antik{\"o}rpers konnte gezeigt werden, dass der dSERT mit serotonergen Somata, Axonen und Dendriten kolokalisiert. Ferner sollten 5HT Konzentrationen im synaptischen Spalt durch {\"U}berexpression des wildtypischen dsert in einem Großteil der Neurone mit Hilfe des UAS/GAL4 Systems reduziert werden. Diese Fliegen wiesen weder eine ver{\"a}nderte 5HT Konzentration in den K{\"o}pfen auf noch war die Ethanolsensitivit{\"a}t bzw. Toleranz ver{\"a}ndert. Das kann einerseits daran liegen, dass der dSERT nicht in die Membran integriert wird oder andererseits daran, dass unser Konstrukt nicht funktional ist. Die {\"U}berexpression eines inaktiven dSERTs sollte theoretisch zur Erh{\"o}hung von 5HT Konzentrationen im synaptischen Spalt f{\"u}hren. Wurde ein inaktiver dSERT in den meisten Neuronen der Fliege exprimiert, erh{\"o}hten sich zwar die 5HT Konzentrationen in den K{\"o}pfen der Fliegen, dennoch war das ethanolinduzierte Verhalten nicht ver{\"a}ndert. Zus{\"a}tzlich wurde untersucht, welchen Einfluss die Inhibition der 5HT Aussch{\"u}ttung auf die Entwicklung von Ethanolsensitivit{\"a}t und Toleranz hat. Zur Inhibition der Neurotransmission in serotonergen Zellen wurde ein Tetanus Toxin (TNT) Transgen in Verbindung mit verschiedenen GAL4 Treiberlinien eingesetzt. Die Inhibition von serotonergen und dopaminergen Neuronen mit Hilfe einer GAL4 Linie, die einen Abschnitt des Gens der Dopamin Decarboxylase (ddc) beinhaltet, f{\"u}hrte zu keiner Ver{\"a}nderung von Ethanolsensitivit{\"a}t bzw. Toleranz. F{\"u}r weitere GAL4 Linien wurde zun{\"a}chst das Expressionsmuster neuroanatomisch untersucht. Von vier ausgew{\"a}hlten GAL4 Linien zeigten zwei Expression in serotonergen Neuronen. Die sert1+2-GAL4 Linie mit einem St{\"u}ck Promotorregion des dsert zeigt Expression in 46\% der serotonergen Neuronen. Wurden diese mit Hilfe von Tetanus Toxin inhibiert, zeigten die Fliegen eine leicht aber signifikant erh{\"o}hte Ethanolsensitivit{\"a}t und eine unver{\"a}nderte Toleranz. Die zweite GAL4 Linie enth{\"a}lt ein St{\"u}ck Promotorregion des 5HT1b Rezeptors und zeigt Expression in ebenfalls 46\% der serotonergen Neurone, weitgehend {\"u}berlappend mit der Expression der Linie sert1+2-GAL4. Jedoch exprimiert die 5htr1b-GAL4 Linie zus{\"a}tzlich in vier serotonergen Neuronen, in elf dopaminergen und einem unbekannten Neuron. Interessanterweise ist nach Inhibition der Neurotransmission in diesen Neuronen eine stark erh{\"o}hte Ethanolsensitivit{\"a}t sowie eine reduzierte Ethanoltoleranz zu beobachten. Folglich k{\"o}nnte die Inhibition der Neurotransmission in dopaminergen Neuronen f{\"u}r die Reduktion der Ethanolsensitivit{\"a}t verantwortlich sein. Deshalb wurde die Neurotransmitterausssch{\"u}ttung in dopaminergen Neuronen mit Hilfe der th-GAL4 Linie und TNT unterdr{\"u}ckt und diese Fliegen wurden auf ihre F{\"a}higkeit untersucht, Ethanolsensitivt{\"a}t und/oder Toleranz zu entwickeln. Nach Inhibition der von th-GAL4 getriebenen dopaminergen Neurone wurde eine erh{\"o}hte Ethanolsensitivit{\"a}t gemessen, aber keine signifikant ver{\"a}nderte Ethanoltoleranz. Da die ddc-GAL4 Linie im Vorfeld keinen ethanolinduzierten Verhaltensph{\"a}notyp gezeigt hat, sollte bestimmt werden, welche dopaminergen Neuronen der 5htr1b-GAL4 sowie der th-GAL4 Linie f{\"u}r die erh{\"o}hte Ethanolsensitivit{\"a}t verantwortlich sind. Serotonerge Neuronengruppen, die in die Entwicklung von Ethanolsensitivit{\"a}t und Toleranz involviert sein k{\"o}nnten, sind SE1, SE2, SE3, LP1, LP2, SP1, SP2 und IP, w{\"a}hrend es sich bei den dopaminergen Neuronengruppen um PAL1, PPL1, PPM2, PPM3 und SVP1 handeln k{\"o}nnte. Einige Neurone der 5htr1b-GAL4 Linie projizieren in den Ellipsoidk{\"o}rper, eine Struktur des Zentralkomplexes, f{\"u}r die bereits gezeigt wurde, dass sie in die Entwicklung vonEthanoltoleranz involviert ist. Jedoch muss n{\"a}her untersucht werden, welche Neuronen f{\"u}r die Innervation verantwortlich sind. Daf{\"u}r sollten GAL4 Linien verwendet werden, die eine {\"a}hnliche Expression wie die 5htr1b-GAL4 Linie, aber ausschließlich im Ellipsoidk{\"o}rper, zeigen. In dieser Arbeit konnte zum ersten Mal gezeigt werden, dass serotonerge und dopaminerge Neurone in die Entwicklung von Ethanolsensitivit{\"a}t und Toleranz in Drosophila melanogaster involviert sind. Ferner konnte gezeigt werden, dass eine ver{\"a}nderte 5HT Signaltransduktion zu einer reduzierten Toleranz f{\"u}hrt. Weiterf{\"u}hrend ist die Identifizierung von serotonergen Neuronen, die f{\"u}r die Entwicklung von Ethanolsensitivit{\"a}t und/oder Toleranz verantwortlich sind, von großem Interesse. Ziel ist es, die neuronalen Schaltkreise aufzudecken, die den Ph{\"a}nomenen Ethanolsensitivit{\"a}t und Toleranz zugrundeliegen.}, subject = {Ethanol}, language = {de} } @phdthesis{Hoyer2007, author = {Hoyer, Susanne Christine}, title = {Neuronal Correlates of Aggression in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25871}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Aggression ist ein facettenreiches Ph{\"a}nomen, das sowohl in Vertebraten als auch in Invertebraten auftritt. Trotz der weiten Verbreitung dieses Verhaltens sind die neuronalen Netzwerke, die der Aggression zugrunde liegen, noch kaum bekannt. Zahlreiche Studien weisen den biogenen Aminen eine prominente Rolle in der Modulation von Aggression zu. Das Ziel dieser Doktorarbeit war mit Hilfe des Modellorganismus Drosophila melanogaster zu der Aufschl{\"u}sselung der neuronalen Korrelate von Aggression beizutragen, insbesondere im Hinblick auf das biogene Amin Oktopamin. In Drosophila sind aggressive Interaktionen aus einer Vielzahl von offensiven und defensiven Verhaltensweisen zusammengesetzt, von denen einige bez{\"u}glich der H{\"a}ufigkeit ihres Auftretens geschlechtsspezifisch sind. Um die Auswertung dieser vielseitigen Verhaltensweisen zu vereinfachen, wurde die Analyse auf einen einzigen Indikator f{\"u}r Aggression beschr{\"a}nkt: den „lunge". Diese bemerkenswerte Verhaltensweise tritt nur im Kontext der Aggression auf und ist charakteristisch f{\"u}r M{\"a}nnchen. In Kooperation mit Andreas Eckart habe ich ein Computerprogramm entwickelt, das eine automatische Ausz{\"a}hlung der lunges in einem vom Forscher gew{\"a}hlten Zeitraum durchf{\"u}hrt. Zus{\"a}tzlich erh{\"a}lt man u.a. Informationen {\"u}ber die Laufstrecke der einzelnen Tiere wie auch {\"u}ber ihre Gr{\"o}ße. Dank eines weiteren von uns entwickelten Programms ist es m{\"o}glich, K{\"a}mpfe zweier Drosophila M{\"a}nnchen unabh{\"a}ngig von deren Genotyp wahlweise automatisch oder halb-automatisch auszuwerten. Mit Hilfe dieser Programme wurde gezeigt, dass (1) die gemeinsame Laufaktivit{\"a}t der beiden M{\"a}nnchen mit der Anzahl aller aufgetretenen lunges korreliert und, dass (2) ein Gr{\"o}ßenunterschied von 8\% ausreichend ist, um zu beeinflussen, welches Tier mehr lunges durchf{\"u}hrt. Ebenfalls konnte festgestellt werden, dass (3) eine Nullmutation im ‚white' Gen, welches einen ABC-Transporter kodiert, aggressives Verhalten fast vollst{\"a}ndig unterdr{\"u}ckt, was teilweise auf eine visuelle Beeintr{\"a}chtigung zur{\"u}ckzuf{\"u}hren ist. Außerdem f{\"u}hrt (4) das Absenken des White-Levels in verschiedenen Bereichen des Zentralgehirns zu reduzierter Aggression; ein Effekt, der auch durch die chemische Entfernung der Pilzk{\"o}rper, einer Struktur des zentralen Gehirns, hervorgerufen werden kann. Dies weist darauf hin, dass die Integrit{\"a}t verschiedener neuronaler Netzwerke/Gehirnbereiche erforderlich ist, um wildtypische Aggression zu erm{\"o}glichen. Zus{\"a}tzlich konnte (5) anhand von Mutationen in zwei Genen der Oktopaminsynthese, die beide die Oktopamin-Konzentration zwar erniedrigen, die Tyramin-Konzentration jedoch heben bzw. senken, demonstriert werden, dass Oktopaminmangel Aggression fast vollst{\"a}ndig zum Erliegen bringt. Wird ein lunge durchgef{\"u}hrt, so ist dessen Ausf{\"u}hrung fast wildtypisch. Rettungsversuche, in denen Oktopamin- und/oder Tyramin-Konzentrationen wiederhergestellt werden, legen nahe, dass ein sehr spezifisches Muster von Oktopamin r{\"a}umlich und zeitlich gew{\"a}hrleistet sein muss, um ein so komplexes und faszinierendes Verhalten wie die Aggression in Drosophila hervorzurufen.}, subject = {Biogene Amine}, language = {en} } @phdthesis{Menzel2007, author = {Menzel, Nicolas}, title = {Molekulare Analyse der zellul{\"a}ren Funktionen der p21-aktivierten Kinase Mushroom bodies tiny von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23727}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {In Drosophila melanogaster wurde der p21-aktivierten Proteinkinase Mushroom bodies tiny (Mbt) eine wichtige Rolle als Regulator w{\"a}hrend der Differenzierung von Photorezeptorzellen zugeschrieben. Da morphologische Umgestaltungsprozesse der Photorezeptorzellen von dynamischen Zellbewegungen begleitet und die molekularen Details gr{\"o}ßtenteils noch ungekl{\"a}rt sind, wurden in dieser Arbeit die Funktionen von Mbt in Bezug auf ver{\"a}nderte Zelladh{\"a}sionseigenschaften, Reorganisation des Aktincytoskeletts und die Beteiligung an weiteren Signalwegen analysiert. Im ersten Projekt wurde ein genetischer Interaktionsscreen mit Hilfe eines hypomorphen mbt- Allels (mbtP3) durchgef{\"u}hrt, um zu untersuchen, in welche zellul{\"a}ren Signalwege Mbt einzuordnen ist. Die Identifizierung des Aktin-Depolymerisationsfaktor Cofilin (Drosophila: Twinstar) und der Phosphatase Slingshot best{\"a}tigte, daß Mbt in Prozesse involviert ist, die die Aktindynamik kontrollieren. In Vertebraten phosphoryliert und inaktiviert die Proteinkinase Pak4 (Drosophila Homolog zu Mbt) die Lim-Kinase (Limk), die wiederum Cofilin durch Phosphorylierung hemmt. Dieser Effekt kann nach Dephosphorylierung des Cofilin durch die Phosphatase Slingshot wieder aufgehoben werden. In Drosophila konnte gezeigt werden, daß aktiviertes Mbt mit Twinstar und Drosophila Limk (D-Limk) assoziiert ist und die Phosphorylierungen beider Molek{\"u}le induzieren kann. Zusammen mit genetischen Experimenten stellen die Ergebnisse entgegen der Situation in Vertebraten die Funktion von D-Limk als Vermittler zwischen Mbt und Twinstar in Frage und lassen vielmehr auf einen Verlauf des Signals von Mbt direkt an Twinstar, {\"u}ber Slingshot oder unbekannte Kinasen schließen. Ein zweites Projekt besch{\"a}ftigte sich mit dem Einfluß von Mbt auf die DE-Cadherin-beta- Catenin/Armadillo vermittelte Zelladh{\"a}sion. Dazu wurde ein Zellkultursystem in Drosophila Schneiderzellen etabliert, welches es erlaubte, den DE-Cadherin-beta-Catenin/Armadillo-alpha- Catenin Komplex vollst{\"a}ndig zu rekonstituieren. Die Resultate zeigten, daß Mbt mit dem Komplex interagiert und beta-Catenin/Armadillo an den Aminos{\"a}uren S561 und S688 phosphoryliert. Die Phosphorylierung bewirkt eine Destabilisierung der Bindung zwischen DE-Cadherin und beta- Catenin/Armadillo und vermindert die Adh{\"a}sion der Zellkontakte zwischen Zellen. Im dritten Projekt ging es um die Suche nach unbekannten Phosphorylierungspartnern und der Integration von Mbt in weitere Signalwege. Dazu wurde eine stringente, radioaktive in vitro Phosphorylierungsreaktion entwickelt, die die Detektion von Mbt-spezifischen Phosphorylierungssubstraten aus einem Extrakt von Drosophila Schneiderzellen erm{\"o}glichte. In einer Vorstufe wurde dieses Extrakt mit dem ATP-Analogon 5'-Fluorosulfonylbenzoyladenosin (5'FSBA) vorbehandelt, um s{\"a}mtliche endogenen Kinasen irreversibel zu inhibieren und die nachfolgende Phosphorylierungsreaktion mit aufgereinigtem Mbt spezifisch f{\"u}r Mbt zu machen. Nach Auftrennung und Identifizierung der potentiellen Phosphoproteine durch Massenspektrometrie wurde das Drosophila Dynamitin als neuer Interaktions- und Phosphorylierungspartner von Mbt gefunden.}, language = {de} } @phdthesis{Fouquet2008, author = {Fouquet, Wernher}, title = {Analysis of synapse assembly in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-38173}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The majority of rapid cell-to-cell communication mechanisms and information processing within the nervous system makes use of chemical synapses. Fast neurotransmission on these sites not only requires very close apposition of pre- and postsynaptic partners, but also depends on an effective structural arrangement of cellular components on both sides of the synaptic cleft. Synaptic vesicles fuse at active zones (AZs), characterized by an electron-dense protein mesh of insufficiently characterized composition and function. EM analysis of synapses identified electron dense structures thought (but not proven) to play an important role for vesicle release efficacy. The molecular organization of presynaptic AZs during Ca2+ influx-triggered neurotransmitter release is currently a focus of intense investigation. Due to its appearance in electron micrographs, dense bodies at Drosophila synapses were named T-bars. Together with the lab of Erich Buchner, we recently showed that Bruchpilot (BRP) of the Drosophila melanogaster, homologous to the mammalian CAST/ERC family in its N-terminal half, is essential for the T-bar assembly at AZs and efficient neurotransmitter release respectively. The question, in which way BRP contributes to functional and structural organization of the AZ, was a major focus of this thesis. First, stimulated emission depletion microscopy (STED), featuring significantly increased optical resolution, was used to achieve first insights into 'cytoarchitecture' of the AZ compartment. In addition, in vivo live imaging experiments following identified populations of synapses over extended periods were preformed to address the trafficking of protein at forming synapses and thereby providing a temporal sequence for the AZ assembly process. Apart from BRP, two additional AZ proteins, DLiprin-\&\#945; and DSyd-1, were included into the analysis, which were both shown to contribute to efficient AZ assembly. Drosophila Syd-1 (DSyd-1) and Drosophila Liprin-\&\#945; (DLiprin-\&\#945;) clusters initiated AZ assembly, finally forming discrete 'quanta' at the AZ edge. ELKS-related Bruchpilot, in contrast, accumulated late from diffuse pools in the AZ center, where it contributed to the electron dense specialization by adopting an extended conformation vertical to the AZ membrane. We show that DSyd-1 and DLiprin-\&\#945; are important for efficient AZ formation. The results of this thesis describe AZ assembly as a sequential protracted process, with matured AZs characterized by sub-compartments and likely quantal building blocks. This step-wise, in parts reversible path leading to mature AZ structure and function offers new control possibilities in the development and plasticity of synaptic circuits.}, subject = {Synapse}, language = {en} }