@phdthesis{Laesker2023, author = {L{\"a}sker, Katharina}, title = {The influence of the short-chain fatty acid butyrate on "Signal transducer and activator of transcription 3" (STAT3) and selected inflammatory genes in the colon carcinoma cell line CACO-2 cultured in 2D and 3D}, doi = {10.25972/OPUS-30038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300389}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {A disturbance in the symbiotic mutualism between the intestinal microbiome and the human host's organism (syn. dysbiosis) accompanies the development of a variety of inflammatory and metabolic diseases that comprise the Metabolic Syndrome, chronic inflammatory gut diseases like Crohn's disease, Non-alcoholic fatty liver disease (NAFLD) and cardiovascular diseases, among others. The changed uptake and effectiveness of short chain fatty acids (SCFAs) as well as an increase of the intestinal permeability are common, interdependent disease elements in this regard. Short chain fatty acids are end-products of intestinal bacterial fermentation and affect the mucosal barrier integrity via numerous molecular mechanisms. There is evidence to suggest, that SCFAs have a modulating influence on Signal transducer and activator of transcription 3 (STAT3) in intestinal epithelial cells. STAT3 is a central gene-transcription factor in signaling pathways of proliferation and inflammation. It can be activated by growth factors and other intercellular signaling molecules like the cytokine Oncostatin M (OSM). The mode of STAT3's activation exhibits, finally, a decisive influence on the immunological balance at the intestinal mucosa. Therefore, the posttranslational modification of STAT3 under the influence of SCFAs is likely to be a very important factor within the development and -progression of dysbiosis-associated diseases. In this study, a clear positive in vitro-effect of the short chain fatty acid butyrate on the posttranslational serine727-phosphorylation of STAT3 and its total protein amount in the human adenocarcinoma cell line CACO2 is verified. Moreover, an increased gene expression of the OSM-receptor subunit OSMRβ can be observed after butyrate incubation. Histone deacetylase inhibition is shown to have a predominant role in these effects. Furthermore, a subsequent p38 MAPK-activation by Butyrate is found to be a key molecular mechanism regarding the STAT3-phosphorylation at serine727-residues. To consider the portion of butyrate receptor signaling in this context in future assays, a CACO-2 cell 3D-culture model is introduced in which an improvement of the GPR109A-receptor expression in CACO-2 cells is accomplished.}, subject = {Butyrate }, language = {en} } @phdthesis{Koenig2022, author = {K{\"o}nig, Anika}, title = {The role of the transcriptional regulators NFATc1 and Blimp-1 in follicular T-cells}, doi = {10.25972/OPUS-20972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209727}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The defense against invading pathogens is, amongst other things, mediated via the action of antibodies. Class-switched antibodies and antibodies of high affinity are produced by plasma cells descending from germinal center B (GCB) cells. GCB cells develop in the germinal center (GC), a specialized microstructure found in the B-cell follicle of secondary lymphoid organs. GCB-cell maturation and proliferation are supported by follicular T- helper (Tfh) cells. On the other hand, follicular regulatory T (Tfr) cells control this process in quantity and quality preventing, for instance, the formation of autoantibodies directed against endogenous structures. The development of GCB, Tfh and Tfr cells essentially depends on the migration into the GC, which is mediated via the expression of the chemokine receptor CXCR5. One transcription factor highly expressed in follicular T cells, comprising Tfh and Tfr cells, is NFATc1. Tfr cells additionally express the transcriptional repressor Blimp-1, which is not expressed in Tfh cells. We found that NFATc1 is transactivating Cxcr5 via response elements in the promoter and enhancer in vitro. Blimp-1 binds to the same elements, transactivating Cxcr5 expression in cooperation with NFATc1, whilst mediating Cxcr5- repression on its own. In Tfr cells Blimp-1 suppresses CXCR5 expression in the absence of NFATc1. Blimp-1 itself is necessary to restrict Tfr-cell frequencies and to mediate Tfr- cell function as in mice with Blimp-1-ablated Tregs high frequencies of Tfr cells do not reduce GCB- or Tfh cell frequencies. NFATc1 and Blimp-1 double deficient Tfr cells show additional loss of function, which becomes visible in clearly expanded antibody titers. To evaluate the function of NFATc1 in Tfr cells, we not only deleted it, but also overexpressed a constitutive active form of NFATc1/aA (caNFATc1/aA) in regulatory T cells (Tregs). The latter is leading to an upregulation of CXCR5 per cell, without changing Tfh or Tfr-cell frequencies. However, the high density of surface CXCR5 enhances the migration of Tfr cells deep into the GC, which results in a tighter control of the antigen- specific humoral immune response. Additionally, caNFATc1/aA increases the expression of genes coding for Tfr effector molecules like Il1rn, Il10, Tigit and Ctla4. Interestingly, this part of the transcriptional change is dependent on the presence of Blimp-1. Furthermore, Blimp-1 regulates the expression of multiple chemokine receptor genes on the background of caNFATc1/aA. In contrast, when caNFATc1/aA is overexpressed in all T cells, the frequencies of Tfh- and GCB cells are dominantly reduced. This effect seems to stem from the conventional T- cell (Tcon) side, most probably originating from increased secretion of interleukin-2 (IL- 2) via the caNFATc1/aA overexpressing Tcons. IL-2 is known to hinder the germinal center reaction (GCR) and it might in its abundance not be neutralizable by Tfr cells. Taken together, NFATc1 and Blimp-1 cooperate to control the migration of Tfr cells into the GC. Tfr cells in the GC depend on NFATc1 and Blimp-1 to perform their proper function. Overexpression of caNFATc1 in Tregs strengthens Tfr function in a Blimp-1-dependent manner, whilst overexpression of caNFATc1 in all T cells dominantly diminishes the GCR.}, subject = {Signaltransduktion}, language = {en} } @phdthesis{Joshi2021, author = {Joshi, Hemant Kumar}, title = {Function of IRAK2 in macrophages and HECTD1 in B cells}, doi = {10.25972/OPUS-15084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150846}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The Immune system exerts its response against invading pathogens via a cumulative, sequential cooperation of immune cells coordinated by their secreted products. Immune cells, such as macrophages and dendritic cells (DCs), express toll-like receptors (TLRs) to sense the presence of pathogens through pathogen-associated molecular patterns (PAMPs). The interaction of PAMPs with TLRs elicits a cytosolic signaling cascade that enhances the expression of genes to stimulate inflammation. Interleukin 1 receptor-associated kinase 2 (IRAK2) is a component of the TLR signaling pathway. IRAK2 transduces the TLR signal via a direct interaction with TNF receptor-associated factor 6 (TRAF6) and subsequent enhancement of its ubiquitination. During my PhD thesis, I determined that a 55-amino acid long stretch at the C-terminal end of IRAK2 is important for TLR signaling. Overexpression of C-terminal truncated IRAK2 (IRAK2Δ55) in the murine macrophage cell line RAW 264.7 led to impaired CD40 expression after TLR4 stimulation by Lipopolysaccharide (LPS). I observed attenuated competency of IRAK2Δ55 in restoring a full TLR signaling response i.e. IL-6 secretion, NO production and CD40 expression in IRAK2-deficient RAW cells generated via CRISPR-Cas9 approach. Additionally, diminished TLR4 induced activation of nuclear factor κB (NF-κB) and extracellular signal related kinase (ERK) was observed with IRAK2Δ55 reconstituted RAW cells as compared to cell reconstituted with wildtype IRAK2. IRAK2Δ55 reconstituted RAW cells also exhibited reduced TLR4-induced cell death and phosphorylation of receptor interacting protein kinase 3 (RIP3). Co-immunoprecipitation experiments in HEK 293T cells showed that IRAK2Δ55 was still able to bind to TRAF6 alike IRAK2 but failed to induce ubiquitination of TRAF6. In conclusion, the results suggest that the IRAK2 TRAF6 interaction is not sufficient to sustain full TLR signaling. An C-terminus-dependent unknown molecular mechanism is also involved. Through my PhD work, I also analyzed a B cell lineage-specific HECTD1 knock-out mice. HECTD1 is an E3 ubiquitin ligase for various substrate proteins, such as heat shock protein 90 (HSP90), adenomatous polyposis coli and phosphatidylinositol phosphate kinase type 1 γ. Hsp90 regulates a variety of signaling molecules in NF-κB activation pathways which are essential for an optimal B cell response. HECTD1-deficient pro-B cells developed normally into mature B cells. However, TLR4 stimulated HECTD1-deficient B cells displayed reduced immunoglobulin (Ig) production in in vitro cultures. In addition, mice with HECTD1-deficient B cells showed a diminished Ig response after nitrophenylacetyl-keyhole limpet hemocyanin immunization. Thus, HECTD1 is necessary for efficient Ig secretion.}, subject = {Toll-like-Rezeptoren}, language = {en} } @phdthesis{Baig2019, author = {Baig, Ayesha Anjum}, title = {Studies on platelet interactions with the coagulation system and on modulators of platelet (hem)ITAM signaling in genetically modified mice}, doi = {10.25972/OPUS-16488}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164888}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Activated platelets and coagulation jointly contribute to physiological hemostasis. However, pathological conditions can also trigger unwanted platelet activation and initiation of coagulation resulting in thrombosis and precipitation of ischemic damage of vital organs such as the heart or brain. The specific contribution of procoagulant platelets, positioned at the interface of the processes of platelet activation and coagulation, in ischemic stroke had remained uninvestigated. The first section of the thesis addresses this aspect through experiments conducted in novel megakaryocyte- and platelet-specific TMEM16F conditional KO mice (cKO). cKO platelets phenocopied defects in platelets from Scott Syndrome patients and had severely impaired procoagulant characteristics. This led to decelerated platelet-driven thrombin generation and delayed fibrin formation. cKO mice displayed prolonged bleeding times and impaired arterial thrombosis. However, infarct volumes in cKO mice were comparable to wildtype (WT) mice in an experimental model of ischemic stroke. Therefore, while TMEM16F-regulated platelet procoagulant activity is critical for hemostasis and thrombosis, it is dispensable for cerebral thrombo-inflammation in mice. The second section describes the generation and initial characterization of a novel knockin mouse strain that expresses human coagulation factor XII (FXII) instead of endogenous murine FXII. These knockin mice had normal occlusion times in an experimental model of arterial thrombosis demonstrating that human FXII is functional in mice. Therefore, these mice constitute a valuable tool for testing novel pharmacological agents against human FXII - an attractive potential target for antithrombotic therapy. Glycoprotein (GP)VI and C-type lectin-like receptor 2 (CLEC-2)-mediated (hem)immunoreceptor tyrosine-based activation motif (ITAM) signaling represent a major pathway for platelet activation. The last section of the thesis provides experimental evidence for redundant functions between the two members of the Grb2 family of adapter proteins - Grb2 and Gads that lie downstream of GPVI and CLEC-2 stimulation. In vitro and in vivo studies in mice deficient in both Grb2 and Gads (DKO) revealed that DKO platelets had defects in (hem)ITAM-stimulation-specific activation, aggregation and signal transduction that were more severe than the defects observed in single Grb2 KO or Gads KO mice. Furthermore, the specific role of these adapters downstream of (hem)ITAM signaling was essential for maintenance of hemostasis but dispensable for the known CLEC-2 dependent regulation of blood-lymphatic vessel separation.}, subject = {Blutgerinnung}, language = {en} } @phdthesis{Dindas2019, author = {Dindas, Julian}, title = {Cytosolic Ca\(^2\)\(^+\), a master regulator of vacuolar ion conductance and fast auxin signaling in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-15863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158638}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das Phytohormon Auxin erf{\"u}llt wichtige Funktionen bei der Initiierung von pflanzlichen Geweben und Organen, wie auch in der Steuerung des Wurzelwachstums im Zusammenspiel mit {\"a}ußeren Reizen wie Schwerkraft, Wasser- und N{\"a}hstoffverf{\"u}gbarkeit. Diese Funktionen basieren dabei vor allem auf der Auxin-abh{\"a}ngigen Regulation von Zellteilung und -streckung. Wichtig f{\"u}r letzteres ist dabei die Kontrolle des Zellturgors durch die Vakuole. Als Speicher f{\"u}r N{\"a}hrstoffe, Metabolite und Toxine sind Vakuolen von essentieller Bedeutung. Vakuol{\"a}r gespeicherte Metabolite und Ionen werden sowohl {\"u}ber aktive Transportprozesse, als auch passiv durch Ionenkan{\"a}le, {\"u}ber die vakuol{\"a}re Membran mit dem Zytoplasma ausgetauscht. In ihrer Funktion als second messenger sind Kalziumionen wichtige Regulatoren, aber auch Gegenstand vakuol{\"a}rer Transportprozesse. {\"A}nderungen der zytosolischen Kalziumkonzentration wirken nicht nur lokal, sie werden auch mit einer Signalweiterleitung {\"u}ber l{\"a}ngere Distanzen in Verbindung gebracht. Im Rahmen dieser Arbeit wurden elektrophysiologische Methoden mit bildgebenden Methoden kombiniert um Einblicke in das Zusammenspiel zwischen zytosolischen Kalziumsignalen, vakuol{\"a}rer Transportprozesse und der Auxin-Physiologie im intakten pflanzlichen Organismus zu gewinnen. Kalziumsignale sind an der Regulierung vakuol{\"a}rer Ionenkan{\"a}le und Transporter beteiligt. Um dies im intakten Organismus zu untersuchen wurden im Modellsystem junger Wurzelhaare von Arabidopsis thaliana Messungen mit intrazellul{\"a}ren Mikroelektroden durchgef{\"u}hrt. Mittels der Zwei-Elektroden-Spannungsklemm-Technik konnte best{\"a}tigt werden, dass die vakuol{\"a}re Membran der limitierende elektrische Wiederstand w{\"a}hrend intravakuol{\"a}rer Messungen ist und so gemessene Ionenstr{\"o}me in der Tat nur die Str{\"o}me {\"u}ber die vakuol{\"a}re Membran repr{\"a}sentieren. Die bereits bekannte zeitabh{\"a}ngige Abnahme der vakuol{\"a}ren Leitf{\"a}higkeit in Einstichexperimenten konnte weiterhin mit einer einstichbedingten, transienten Erh{\"o}hung der zytosolischen Kalziumkonzentration korreliert werden. Durch intravakuol{\"a}re Spannungsklemmexperimente in Wurzelhaarzellen von Kalziumreporterpflanzen konnte dieser Zusammenhang zwischen vakuol{\"a}rer Leitf{\"a}higkeit und der zytosolischen Kalziumkonzentration best{\"a}tigt werden. Die Vakuole ist jedoch nicht nur ein Empf{\"a}nger zytosolischer Kalziumsignale. Da die Vakuole den gr{\"o}ßten intrazellul{\"a}ren Kalziumspeicher darstellt, wird seit Langem diskutiert, ob sie auch an der Erzeugung solcher Signale beteiligt ist. Dies konnte in intakten Wurzelhaarzellen best{\"a}tigt werden. {\"A}nderungen des vakuol{\"a}ren Membranpotentials wirkten sich auf die zytosolische Kalziumkonzentration in diesen Zellen aus. W{\"a}hrend depolarisierende Potentiale zu einer Erh{\"o}hung der zytosolischen Kalziumkonzentration f{\"u}hrten, bewirkte eine Hyperpolarisierung der vakuol{\"a}ren Membran das Gegenteil. Thermodynamische {\"U}berlegungen zum passiven und aktiven Kalziumtransport {\"u}ber die vakuol{\"a}re Membran legten dabei den Schluss nahe, dass die hierin beschriebenen Ergebnisse das Verhalten von vakuol{\"a}ren H+/Ca2+ Austauschern wiederspiegeln, deren Aktivit{\"a}t durch die protonenmotorische Kraft bestimmt wird. Im Rahmen dieser Arbeit stellte sich weiterhin heraus, dass zytosolisches Kalzium ebenso ein zentraler Regulator eines schnellen Auxin-induzierten Signalweges ist, {\"u}ber den der polare Transport des Hormons reguliert wird. Im gleichen Modellsystem junger Wurzelhaare konnte gezeigt werden, dass die externe Applikation von Auxin eine sehr schnelle, Auxinkonzentrations- und pH-abh{\"a}ngige Depolarisation des Plasmamembranpotentials zur Folge hat. Synchron zur Depolarisation des Plasmamembranpotentials wurden im Zytosol transiente Kalziumsignale registriert. Diese wurden durch einen von Auxin aktivierten Einstrom von Kalziumionen durch den Ionenkanal CNGC14 hervorgerufen. Experimente an Verlustmutanten als auch pharmakologische Experimente zeigten, dass zur Auxin-induzierten Aktivierung des Kalziumkanals die Auxin-Perzeption durch die F-box Proteine der TIR1/AFB Familie erforderlich ist. Durch Untersuchungen der Auxin-abh{\"a}ngigen Depolarisation wie auch des Auxin-induzierten Einstroms von Protonen in epidermale Wurzelzellen von Verlustmutanten konnte gezeigt werden, dass die sekund{\"a}r aktive Aufnahme von Auxin durch das hochaffine Transportprotein AUX1 f{\"u}r die schnelle Depolarisation verantwortlich ist. Nicht nur die zytosolischen Kalziumsignale korrelierten mit der CNGC14 Funktion, sondern ebenso die AUX1-vermittelte Depolarisation von Wurzelhaaren. Eine unver{\"a}nderte Expression von AUX1 in der cngc14 Verlustmutante legte dabei den Schluss nahe, dass die Aktivit{\"a}t von AUX1 posttranslational reguliert werden muss. Diese Hypothese erfuhr Unterst{\"u}tzung durch Experimente, in denen die Behandlung mit dem Kalziumkanalblocker Lanthan zu einer Inaktivierung von AUX1 im Wildtyp f{\"u}hrte. Die zytosolische Beladung einzelner epidermaler Wurzelzellen mit Auxin hatte die Ausbreitung lateraler und acropetaler Kalziumwellen zur Folge. Diese korrelierten mit einer Verschiebung des Auxin-Gradienten an der Wurzelspitze und unterst{\"u}tzten somit eine hypothetische Kalziumabh{\"a}ngige Regulation des polaren Auxin Transports. Ein Model f{\"u}r einen schnellen, Auxin induzierten und kalziumabh{\"a}ngigen Signalweg wird pr{\"a}sentiert und dessen Bedeutung f{\"u}r das gravitrope Wurzelwachstum diskutiert. Da die AUX1-vermittelte Depolarisation in Abh{\"a}ngigkeit von der externen Phosphatkonzentration variierte, wird die Bedeutung dieses schnellen Signalwegs ebenso f{\"u}r die Anpassung des Wurzelhaarwachstums an eine nicht ausreichende Verf{\"u}gbarkeit von Phosphat diskutiert.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Heidenreich2018, author = {Heidenreich, Julius Frederik}, title = {Characterization of the widely used Rac1-inhibitors NSC23766 and EHT1864 in mouse platelets}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165453}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Platelet activation and aggregation at sites of vascular injury is critical to prevent excessive blood loss, but may also lead to life-threatening ischemic diseases, such as myocardial infarction and stroke. Extracellular agonists induce platelet activation by stimulation of platelet membrane receptors. Signal transduction results in reorganization of the cytoskeleton, shape change, platelet adhesion and aggregation, cumulating in thrombus formation. Several Rho GTPases, including Rac1, Cdc42 and RhoA, are essential mediators of subsequent intracellular transduction of ITAM- and GPCR-signaling. Therefore, inhibition or knockout can result in severely defective platelet signaling. Mice with platelet specific Rac1-deficiency are protected from arterial thrombosis. This benefit highlights further investigation of Rac1-specific functions and its potential as a new pharmacological target for prevention of cardiovascular diseases. Two newly developed synthetic compounds, NSC23766 and EHT1864, were proposed to provide highly specific inhibition of Rac1 activity, but both drugs have never been tested in Rac1-deficient cell systems to rule out potential Rac1-independent effects. This study revealed significant off-target effects of NSC23766 and EHT1864 that occurred in a dose-dependent fashion in both wild-type and Rac1-deficient platelets. Both inhibitors individually affected resting platelets after treatment, either by altering membrane protein expression (NSC23766) or by a marked decrease of platelet viability (EHT1864). Platelet apoptosis could be confirmed by enhanced levels of phosphatidylserine exposure and decreased mitochondrial membrane potential. Phosphorylation studies of the major effector proteins of Rac1 revealed that NSC23766 and EHT1864 abolish PAK1/PAK2 activation independently of Rac1 in wild-type and knockout platelets, which may contribute to the observed off-target effects. Additionally, this study demonstrated the involvement of Rac1 in G protein-coupled receptor-mediated platelet activation and GPIb-induced signaling. Furthermore, the data revealed that Rac1 is dispensable in the process of integrin IIb 3-mediated clot retraction. This study unveiled that new pharmacological approaches in antithrombotic therapy with Rac1 as molecular target have to be designed carefully in order to obtain high specificity and minimize potential off-target effects.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Godbole2018, author = {Godbole, Amod Anand}, title = {A new paradigm in GPCR signaling at the trans-Golgi network of thyroid cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147159}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Whereas G-protein coupled receptors (GPCRs) have been long believed to signal through cyclic AMP exclusively at cell surface, our group has previously shown that GPCRs not only signal at the cell surface but can also continue doing so once internalized together with their ligands, leading to persistent cAMP production. This phenomenon, which we originally described for the thyroid stimulating hormone receptor (TSHR) in thyroid cells, has been observed also for other GPCRs. However, the intracellular compartment(s) responsible for such persistent signaling and its consequences on downstream effectors were insufficiently characterized. The aim of this study was to follow by live-cell imaging the trafficking of internalized TSHRs and other involved signaling proteins as well as to understand the consequences of signaling by internalized TSHRs on the downstream activation of protein kinase A (PKA). cAMP and PKA activity was measured in real-time in living thyroid cells using FRET-based sensors Epac1-camp and AKAR2 respectively. The results suggest that TSH co-internalizes with its receptor and that the internalized TSH/TSHR complexes traffic retrogradely to the trans-Golgi network (TGN). This study also provides evidence that these internalized TSH/TSHR complexes meet an intracellular pool of Gs proteins in sorting endosomes and in TGN and activate it there, as visualized in real-time using a conformational biosensor nanobody, Nb37. Acute Brefeldin A-induced Golgi collapse hinders the retrograde trafficking of TSH/TSHR complexes, leading to reduced cAMP production and PKA signaling. BFA pretreatment was also able to attenuate CREB phosphorylation suggesting that an intact Golgi/TGN organisation is essential for an efficient cAMP/PKA signaling by internalized TSH/TSHR complexes. Taken together this data provides evidence that internalized TSH/TSHR complexes meet and activate Gs proteins in sorting endosomes and at the TGN, leading to a local activation of PKA and consequently increased CREB activation. These findings suggest unexpected functions for receptor internalization, with major pathophysiological and pharmacological implications.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @phdthesis{Moench2017, author = {M{\"o}nch, Romana}, title = {The Growth Factor PDGF and its Signaling Pathways in Colorectal Cancer}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139100}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {A successful therapy for colorectal cancer (CRC), one of the most common malignancies worldwide, requires the greatest possible research effort. Of critical importance is an understanding of the relevant intracellular networks of signaling cascades, their activation, and the resulting cellular changes that are a prerequisite for a more successful CRC therapy. Vascular endothelial growth factor (VEGF) and the appropriate VEGF receptors represent molecular targets that have already been successfully implemented in the clinic (i.e. using monoclonal antibodies, tyrosine kinase inhibitors). However, for platelet derived growth factor (PDGF) and the relevant PDGF receptors, there are currently no clinically approved molecular therapeutics available. However, there are preliminary data to show that PDGF and its associated signaling pathways play an important role in CRC progression. In particular, the PI3K/Akt/mTOR pathway is emerging as an important intracellular partner of PDGF with which to control proliferation, migration, and angiogenesis in tumor cells. Therefore it was the objective of this work to investigate the multifactorial influence of PDGF on proliferation and metabolism, depending on CRC mutation status. The intention was to identify new therapeutic targets for future cancer therapy through analyses of PDGF-induced intracellular changes. For this purpose two human colorectal cancer cell lines were analyzed at gene and/or protein level for components of the PI3K/Akt/mTOR and MAPK signaling pathway, c-Myc, p53, and HIF1α (hypoxia-inducible-factor 1α). Changes in proliferation and metabolism, either during stimulation with PDGF and/or PI3K/Akt/mTOR inhibition, were also investigated. Experiments conducted at protein level during PDGF stimulation and/or PI3K/Akt/mTOR inhibition revealed changes in signaling pathways and crosstalk. The influence of the tumor suppressors (retinoblastoma, Rb), oncogenes (c-Myc, p53mut), and HIF1α during stimulation with PDGF, and their interactions in the tumor cell with respect to proliferation and glycolysis warrant further examination in terms of clinical treatment options. Investigations at the gene level of ex vivo samples (UICC I-IV) complete the study with regards to the clinical relevance of PDGF. PDGF stimulation increases tumor cell proliferation in HT29 cells via the PI3K/Akt/mTOR pathway rather than the MAPK pathway. However, if the PI3K/Akt/mTOR pathway is pharmacologically blocked, PDGF stimulation is mediated by inhibitory crosstalk through the MAPK pathway. Further analyses revealed that specific Akt inhibition impedes tumor cell growth, while PI3K inhibition had little effect on proliferation. Inhibitory crosstalk was found to be responsible for these different effects. Careful intervention strategies are therefore required if future therapies intend to make use of these specific signaling pathways. One aim of future research should be to gain a better understanding of the crosstalk between these signaling pathways. In this fashion, "over-inhibition" of the signal pathways, which would result in additional clinical side effects for patients, could be prevented. In late stage UICC, more mutation events occur, with tumorigenicity promoted by an increased mutation rate. Given that PDGF is increasingly expressed in the late UICC stages, our data would indicate that PDGF's effects are amplified with increasing malignancy. The activating effect of PDGF on the PI3K/Akt/mTOR pathway and subsequent changes in the activity of p53mut, Rb, c-Myc, and HIF1α, lead to an unfavorable prognosis for colon cancer patients. PDGF acts on colon cancer cells in an Akt-activating, glycolysis-dependent manner. PDGF increases glycolysis and the ability of CRC cells to adjust their energy metabolism. These activities should be taken as possible starting points with which to design therapeutic interventions for CRC therapy. PDGF, as another representative of the growth factor family, seems to play a similar role to VEGF in CRC. The data from this study underline the importance of the PDGF - PI3K/Akt/mTOR pathway-axis and its potential as a possible target in colorectal cancer. Thus PDGF represents an attractive therapeutic target, besides the VEGF/EGFR-based therapies already used in CRC.}, subject = {Dickdarmkrebs}, language = {en} } @phdthesis{Voegtle2014, author = {V{\"o}gtle, Timo}, title = {Studies on receptor signaling and regulation in platelets and T cells from genetically modified mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97114}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Receptors with tyrosine-based signaling motifs control essential functions of hematopoietic cells, including lymphocytes and platelets. Downstream of the platelet receptor glycoprotein (GP) VI and the T cell receptor (TCR) the immunoreceptor tyrosine-based activation motif (ITAM) initiates a signaling cascade that involves kinases, adapter and effector proteins and finally leads to cellular activation. This thesis summarizes the results of three studies investigating different aspects of receptor signaling and regulation in platelets and T cells. In the first part, the impact of constitutive Ca2+ influx on TCR signaling and T cell physiology was investigated using a transgenic mouse line with a mutation in the Ca2+ sensor stromal interaction molecule 1 (STIM1). The elevated cytoplasmic Ca2+ level resulted in an altered phosphorylation pattern of the key enzyme phospholipase (PL) Cγ1 in response to TCR stimulation, but without affecting its enzymatic activity. Withdrawal of extracellular Ca2+ or inhibition of the phosphatase calcineurin restored the normal phosphorylation pattern. In addition, there was a decrease in the release of Th2-type cytokines interleukin 4, 5 and 13 upon stimulation in vitro. The second part of the thesis deals with the role of the adapter protein growth factor receptor-bound protein 2 (Grb2) in platelets using a megakaryocyte/platelet-specific knockout mouse line. Loss of Grb2 severely impaired signaling of GPVI and C-type lectin-like receptor 2 (CLEC-2), a related hemITAM receptor. This was attributed to defective stabilization of the linker for activation of T cells (LAT) signalosome and resulted in reduced adhesion, aggregation, Ca2+ mobilization and procoagulant activity downstream of (hem)ITAM-coupled receptors in vitro. In contrast, the signaling pathways of G protein-coupled receptors (GPCRs) and the integrin αIIbβ3, which do not utilize the LAT signalosome, were unaffected. In vivo, the defective (hem)ITAM signaling caused prolonged bleeding times, however, thrombus formation was only affected under conditions where GPCR signaling was impaired (upon acetylsalicylic acid treatment). These results establish Grb2 as an important adapter protein in the propagation of GPVI- and CLEC-2-induced signals. Finally, the proteolytic regulation of the immunoreceptor tyrosine-based switch motif (ITSM)-bearing receptor CD84 in platelets was investigated. This study demonstrated that in mice CD84 is cleaved by two distinct and independent proteolytic mechanisms upon platelet activation: shedding of the extracellular part, which is exclusively mediated by a disintegrin and metalloproteinase (ADAM) 10 and cleavage of the intracellular C-terminus by the protease calpain. Finally, the analysis of soluble CD84 levels in the plasma of transgenic mice revealed that shedding of CD84 by ADAM10 occurs constitutively in vivo.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Sibilski2014, author = {Sibilski, Claudia}, title = {Identification and characterization of the novel mKSR1 phosphorylation site Tyr728 and its role in MAPK signaling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114672}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In mammals, KSR1 functions as an essential scaffold that coordinates the assembly of RAF/MEK/ERK complexes and regulates intracellular signal transduction upon extracellular stimulation. Aberrant activation of the equivalent MAPK signaling pathway has been implicated in multiple human cancers and some developmental disorders. The mechanism of KSR1 regulation is highly complex and involves several phosphorylation/dephosphorylation steps. In the present study, a number of novel in vivo phosphorylation sites were detected in mKSR1 by use of mass spectrometry analysis. Among others, Tyr728 was identified as a unique regulatory residue phosphorylated by LCK, a Src kinase family member. To understand how phosphorylation of Tyr728 may regulate the function of KSR1 in signal transduction and cellular processes, structural modeling and biochemical studies were integrated in this work. Computational modeling of the mKSR1(KD) protein structure revealed strong hydrogen bonding between phospho-Tyr728 and the residues surrounding Arg649. Remarkably, this pattern was altered when Tyr728 was non-phosphorylated or substituted. As confirmed by biochemical analysis, Arg649 may serve as a major anchor point for phospho-Tyr728 in order to stabilize internal structures of KSR1. In line with the protein modeling results, mutational studies revealed that substitution of Tyr728 by phenylalanine leads to a less compact interaction between KSR1 and MEK, a facilitated KSR1/B-RAF binding and an increased phosphorylation of MEK in complex with KSR1. From these findings it can be concluded that phospho-Tyr728 is involved in tightening the KSR1/MEK interaction interface and in regulating the phosphorylation of KSR1-bound MEK by either RAF or KSR1 kinases. Beside the Tyr728, Ser722 was identified as a novel regulatory phosphorylation site. Amino acid exchanges at the relevant position demonstrated that Ser722 regulates KSR1-bound MEK phosphorylation without affecting KSR1/MEK binding per se. Due to its localization, Ser722 might consequently control the catalytic activity of KSR1 by interfering with the access of substrate (possibly MEK) to the active site of KSR1 kinase. Together with Ser722, phosphorylated Tyr728 may further positively affect the kinase activity of KSR1 as a consequence of its vicinity to the activation and catalytic loop in the KSR1(KD). As revealed by structural modeling, phospho-Tyr728 builds a hydrogen bond with the highly conserved Lys685. Consequently, phospho-Tyr728 has a stabilizing effect on internal structures involved in the catalytic reaction and possibly enhances the phosphate transfer within the catalytic cleft in KSR1. Considering these facts, it seems very likely that the LCK-dependent phosphorylation of Tyr728 plays a crucial role in the regulation of KSR1 catalytic activity. Results of fractionation and morphology analyses revealed that KSR1 recruits LCK to cytoskeleton for its phosphorylation at Tyr728 suggesting that this residue may regulate cytoskeleton dynamics and, consequently, cell motility. Beside that, phosphorylation of Tyr728 is involved in the regulation of cell proliferation, as shown by a significantly reduced population doubling time of KSR1-Y728F cells compared to cells expressing wild type KSR1. Taken together, tyrosine phosphorylation in KSR1 uncovers a new link between Src family kinases and MAPK signaling. Tyr728, the novel regulatory phosphorylation site in murine KSR1, may coordinate the transition between the scaffolding and the catalytic function of KSR1 serving as a control point used to fine-tune cellular responses.}, subject = {MAP-Kinase}, language = {en} }