@phdthesis{Pfeiffer2012, author = {Pfeiffer, Hendrik}, title = {Synthesis and biological activity of molybdenum carbonyl complexes and their peptide conjugates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71199}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Molybdenum carbonyl complexes with different polypyridyl coligands were prepared and conjugated to peptides by mild bioorthogonal coupling reactions like the oxime ligation and a catalyst-free azide-alkyne click reaction utilized for the first time in such a context. The biological activity of some of the new complexes and conjugates, including their CO release properties, cytotoxicity on human cancer cells, and mode of induction of cell death was studied.}, subject = {Molybd{\"a}ncarbonyle}, language = {en} } @phdthesis{Neuenkirchen2012, author = {Neuenkirchen, Nils}, title = {An in vitro system for the biogenesis of small nuclear ribonucleoprotein particles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71300}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Most protein-encoding genes in Eukaryotes are separated into alternating coding and non-coding sequences (exons and introns). Following the transcription of the DNA into pre-messenger RNA (pre-mRNA) in the nucleus, a macromolecular complex termed spliceosome removes the introns and joins the exons to generate mature mRNA that is exported to the cytoplasm. There, it can be interpreted by ribosomes to generate proteins. The spliceosome consists of five small nuclear ribonucleic acids (snRNAs) and more than 150 proteins. Integral components of this complex are RNA-protein particles (RNPs) composed of one or two snRNAs, seven common (Sm) and a various number of snRNP-specific proteins. The Sm proteins form a ring-structure around a conserved site of the snRNA called Sm site. In vitro, Sm proteins (B/B', D1, D2, D3, E, F, G) and snRNA readily assemble to form snRNPs. In the context of the cell, however, two macromolecular trans-acting factors, the PRMT5 (protein arginine methyltransferases type 5) and the SMN (survival motor neuron) complex, are needed to enable this process. Initially, the Sm proteins in the form of heterooligomers D1/D2, D3/B and F/E/G are sequestered by the type II methyltransferase PRMT5. pICln, a component of the PRMT5 complex, readily interacts with Sm proteins to form two distinct complexes. Whereas the first one comprises pICln and D3/B the second one forms a ring consisting of pICln, D1/D2 and F/E/G (6S). It has been found that pICln prevents the premature interaction of snRNAs with the Sm proteins in these complexes and thus functions as an assembly chaperone imposing a kinetic trap upon the further assembly of snRNPs. PRMT5 catalyzes the symmetrical dimethylation of arginine residues in B/B', D1 and D3 increasing their affinity towards the SMN complex. Finally, the SMN complex interacts with the pICln-Sm protein complexes, expels pICln and mediates snRNP assembly in an ATP-dependent reaction. So far, only little is known about the action of PRMT5 in the early phase of snRNP assembly and especially how the 6S complex is formed. Studies of this have so far been hampered by the unavailability of soluble and biologically active PRMT5 enzyme. The composition of the SMN complex and possible functions of individual subunits have been elucidated or hypothesized in recent years. Still, the exact mechanism of the entire machinery forming snRNPs is poorly understood. In vivo, reduced production of functional SMN protein results in the neurodegenerative disease spinal muscular atrophy (SMA). How specific SMN mutations that have been found in SMA patients cause the disease remains elusive, yet, are likely to interfere with either SMN complex stability or snRNP assembly. The aim of this work was to establish an in vitro system to recapitulate the cytoplasmic assembly of snRNPs. This was enabled by the recombinant production of all PRMT5 and SMN complex components as well as Sm proteins in a combination of bacterial and insect cell expression systems. Co-expression of human PRMT5 and its direct interaction partner WD45 (WD-repeat domain 45) in Sf21 (Spodoptera frugiperda 21) insect cells resulted for the first time in soluble and biologically active enzyme. Recombinant PRMT5/WD45 formed complexes with Sm protein heterooligomers as well as pICln-Sm protein complexes but not with F/E/G alone. Also, the enzyme exhibited a type II methyltransferase activity catalyzing the mono- (MMA) and symmetrical dimethylation (sDMA) of Sm proteins B, D1 and D3. Two experimental setups were devised to quantitatively analyze the overall methylation of substrates as well as to identify the type and relative abundance of specific methylation types. Methylation of Sm proteins followed Michaelis-Menten kinetics. Complex reconstitutions and competition of the methylation reaction indicate that 6S is formed in a step-wise manner on the PRMT5 complex. The analysis of the methylation type could be applied to deduce a model of sequential MMA and sDMA formation. It was found that large Sm protein substrate concentrations favored monomethylation. Following a distributive mechanism this leads to the conclusion that PRMT5 most likely confers partial methylation of several different substrate proteins instead of processing a single substrate iteratively until it is completely dimethylated. Finally, the human SMN complex was reconstituted from recombinant sources and was shown to be active in snRNP formation. The introduction of a modified SMN protein carrying a mutation (E134K) present in spinal muscular atrophy (SMA) proved that mutated complexes can be generated in vitro and that these might be applied to elucidate the molecular etiology of this devastating disease.}, subject = {Biogenese}, language = {en} } @phdthesis{Mueller2012, author = {M{\"u}ller, Stephanie}, title = {Identification of early molecular changes associated with Fumonisin B1-induced carcinogenesis in vivo and in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71336}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Fumonisin B1 (FB1) is a mycotoxin produced by various Fusarium species and constitutes a major contaminant of maize worldwide. A 2-year carcinogenicity study of the National Toxicology Program (NTP) in Fischer N344 rats showed that male rats were most susceptible to FB1-induced tumor formation in the kidney. Histopathologically, a rare and highly malignant tumor type originating from the proximal tubules of rat kidney with increased potential for invasion and metastasis was identified. However, mechanisms underlying the FB1-induced carcinogenesis in kidneys of male rats are still not clear. Previous studies have shown that FB1-mediated disruption of sphingolipid metabolism via inhibition of ceramide synthase is a primary key event in FB1 toxicity. The disruption of sphingolipid metabolism may cause time- and dose-related changes in the relative balance of various bioactive intermediates. Furthermore, the ability of FB1 to induce renal cell death and subsequent compensatory cell proliferation is well known, but it does not completely explain the invasive growth characteristics and exceptionally high metastatic potential of FB1-induced tumors. Considering the complexity of sphingolipid metabolism and the fact that various sphingolipids (e.g. ceramide, sphingoid bases and their respective 1-phosphates) act on opposing signaling pathways, it is hypothesized that the balance between individual sphingolipids and thus the overall cellular response to FB1 may shift with time and by continuing FB1 exposure, resulting in the disruption of specific cell signaling pathways, which may promote tumor formation in kidney. To identify early FB1-induced gene expression patterns in the kidney, which may be associated with sphingolipid-mediated signaling pathways in cancer, a short-term i.p. study on FB1 in male Sprague Dawley rats was performed and changes in gene expression were analyzed using a qRT-PCR array that comprises 84 relevant genes of 6 pathways pivotally involved in the formation of cancer. Furthermore, apoptosis and cell proliferation as well as changes in specific sphingolipids were investigated in FB1-treated kidneys. As shown by classical histopathology (H\&E) and (immuno)-histochemical staining (TUNEL and BrdU), FB1 caused a time- and dose-dependent increase in tubular apoptosis in the cortex and OSOM of the kidney, which was compensated by the induction of proliferation in the affected areas. HPLC-MS/MS analysis of bioactive sphingolipids demonstrated that FB1 induced a marked elevation of the pro-apoptotic sphingoid bases sphinganine and sphingosine, which paralleled the time- and dose-dependent increase in renal tubular apoptosis. With prolonged exposure to FB1, increased metabolic conversion of the accumulated sphinganine to the sphinganine-1-phosphate, a second messenger with anti-apoptotic and proliferative properties, was observed in kidney. This finding was compliant with the increased regenerative cell proliferation in the cortex and OSOM. In addition to effects on sphingoid bases and their 1-phosphate metabolites, this study, for the first time, demonstrated reduced levels of specific ceramides in rat kidney after FB1 exposure. In particular, C16-ceramide, which is a widespread constituent of membrane-bound complex sphingolipids involved in cell adhesion, was time- and dose-dependently decreased after treatment with FB1. Besides its role as component of the cell membrane, C16-ceramide functions as a signaling molecule for the initiation of apoptosis in response to various stress stimuli. Under conditions of chronic FB1 exposure, a significant reduction in pro-apoptotic C16-ceramide together with markedly increased levels of anti-apoptotic and proliferation-promoting sphingoid base 1-phosphates may thus favor resistance to stress-induced apoptosis and facilitate the survival of abnormal cells with potential to initiate tumor formation. Our study also revealed that early exposure to FB1 resulted in increased expression of a plethora of genes involved in tumor initiation as well as tumor progression. While single FB1 exposure was demonstrated to predominately induce gene expression of proto-oncogenic transcription factors (e.g. Fos, Jun, Myc) and apoptotis-related genes (e.g. members of the tumor-necrosis factor family), repeated exposure resulted in marked upregulation of genes mediating cell survival and cell proliferation (e.g. Bcl-XL, Bcl-2, Nfκb1 and Egfr). Moreover, continued exposure to FB1 initiated increased expression of genes critically involved in tumor migration, adhesion, invasion and metastasis. A close correlation was established between gene expression changes in response to FB1 and known signaling pathways mediated by extracellular or intracellular action of sphingoid base 1-phosphates - bioactive lipids that were markedly increased after FB1 treatment. In particular, genes encoding components of the plasminogen activator system were abundantly upregulated. These mediate invasion and metastasis in response to So1P, and may hence particularly promote the formation of highly aggressive and invasive tumors in kidney as observed after chronic exposure to FB1. Thus, it is conceivable that upregulation of a majority of genes in response to FB1 may be a direct or indirect consequence of increased So1P signaling. Another aim of this study was to identify differences in the organ-specific susceptibility for tumor formation by comparing FB1-mediated effects on apoptosis, cell proliferation, sphingolipids, and selected cancer-related genes in kidney and liver. Collectively, the present results revealed that kidney and liver showed marked differences in several endpoints of FB1 toxicity, which seemed to be primarily associated with their different susceptibility to FB1-mediated alterations in sphingolipid metabolism. The strong correlation between histopathological lesions and alterations in sphingolipid metabolism as well as sphingoid base 1-phosphate accumulation and concomitant S1P receptor expression suggested that tumor formation and progression to highly malignant carcinomas seems to be rather favored in kidney compared to liver. However, genes mostly deregulated by FB1 treatment in kidney (PAI-1, Thbs1 and Itga2) were also found to be induced in liver. To verify FB1-induced gene expression in kidney, normal rat tubular epithelial (NRK-52E) cells were analyzed for FB1-induced expression changes of the same cancer-related genes as in vivo. The results of qRT-PCR analysis revealed that gene expression changes in NRK-52E cells after FB1 treatment strongly correlated with those found in rat kidney and paralleled the marked alterations in sphingolipid metabolism. Furthermore, a good correlation between FB1-induced expression changes of cancer-related genes obtained in vivo and in vitro and those known to be mediated by bioactive sphingoid base 1-phosphates in cancer was established. Moreover, experiments modeling the invasive behavior of NRK-52E cells showed that FB1 may enhance cell invasion, which also correlated with both the increase in invasion- and metastasis-associated genes and bioactive sphingoid base 1-phophates. Importantly, NRK-52E cells basally expressed the S1P receptors S1P2 and S1P3, which are known to be involved in tumor migration and invasion. Since these receptors were also identified as most abundant S1PRs in kidneys of male Sprague Dawley rats, they may present important mediators of gene expression and invasion in response to FB1 in vivo. In summary, FB1-mediated disruption of sphingolipid metabolism and subsequent time- and dose-related increase in intermediates, such as bioactive sphingoid base 1-phosphates, correlate with early changes in genes and signaling pathways that may mediate loss of growth control, replication, evasion of apoptosis, cell motility and invasion, and thus favor renal tumor formation in response to FB1. However, to clarify whether the obtained gene expression changes in cancer-related genes in kidney are specific to the biological action of sphingoid base 1-phosphates and their respective receptors, further mechanistic studies are necessary.}, subject = {Nephrotoxizit{\"a}t}, language = {en} } @phdthesis{Cord2012, author = {Cord, Anna}, title = {Potential of multi-temporal remote sensing data for modeling tree species distributions and species richness in Mexico}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71021}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Current changes of biodiversity result almost exclusively from human activities. This anthropogenic conversion of natural ecosystems during the last decades has led to the so-called 'biodiversity crisis', which comprises the loss of species as well as changes in the global distribution patterns of organisms. Species richness is unevenly distributed worldwide. Altogether, 17 so-called 'megadiverse' nations cover less than 10\% of the earth's land surface but support nearly 70\% of global species richness. Mexico, the study area of this thesis, is one of those countries. However, due to Mexico's large extent and geographical complexity, it is impossible to conduct reliable and spatially explicit assessments of species distribution ranges based on these collection data and field work alone. In the last two decades, Species distribution models (SDMs) have been established as important tools for extrapolating such in situ observations. SDMs analyze empirical correlations between geo-referenced species occurrence data and environmental variables to obtain spatially explicit surfaces indicating the probability of species occurrence. Remote sensing can provide such variables which describe biophysical land surface characteristics with high effective spatial resolutions. Especially during the last three to five years, the number of studies making use of remote sensing data for modeling species distributions has therefore multiplied. Due to the novelty of this field of research, the published literature consists mostly of selective case studies. A systematic framework for modeling species distributions by means of remote sensing is still missing. This research gap was taken up by this thesis and specific studies were designed which addressed the combination of climate and remote sensing data in SDMs, the suitability of continuous remote sensing variables in comparison with categorical land cover classification data, the criteria for selecting appropriate remote sensing data depending on species characteristics, and the effects of inter-annual variability in remotely sensed time series on the performance of species distribution models. The corresponding novel analyses were conducted with the Maximum Entropy algorithm developed by Phillips et al. (2004). In this thesis, a more comprehensive set of remote sensing predictors than in the existing literature was utilized for species distribution modeling. The products were selected based on their ecological relevance for characterizing species distributions. Two 1 km Terra-MODIS Land 16-day composite standard products including the Enhanced Vegetation Index (EVI), Reflectance Data, and Land Surface Temperature (LST) were assembled into enhanced time series for the time period of 2001 to 2009. These high-dimensional time series data were then transformed into 18 phenological and 35 statistical metrics that were selected based on an extensive literature review. Spatial distributions of twelve tree species were modeled in a hierarchical framework which integrated climate (WorldClim) and MODIS remote sensing data. The species are representative of the major Mexican forest types and cover a variety of ecological traits, such as range size and biotope specificity. Trees were selected because they have a high probability of detection in the field and since mapping vegetation has a long tradition in remote sensing. The result of this thesis showed that the integration of remote sensing data into species distribution models has a significant potential for improving and both spatial detail and accuracy of the model predictions.}, subject = {Fernerkundung}, language = {en} } @phdthesis{Guethlein2012, author = {G{\"u}thlein, Frank}, title = {{\"U}bergangsmetallkatalysierte Synthese von Diboranen(4)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71013}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Diborane(4) Bis(catecholato)diboran und Bis(pinakolato)diboran k{\"o}nnen durch homogene und heterogene Katalysatoren durch eine Dehydrokupplungsreaktion ausgehend von Catecholboran und Pinakolboran dargestellt werden. Der effizienteste Katalysator f{\"u}r diese Reaktion ist Platin auf Aluminiumoxid, wobei Umsatzzahlen von maximal 11600 und Umsatzfrequenzen von 444 1/h erreicht werden.}, subject = {Heterogene Katalyse}, language = {de} } @phdthesis{Froelich2012, author = {Fr{\"o}lich, Nadine}, title = {Analyse der µ-Opiatrezeptoraktivierung und Signaltransduktion in lebenden Zellen mittels FRET-Mikroskopie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71009}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Der Fluoreszenz-Resonanz-Energie-Transfer ist ein Ph{\"a}nomen, welches erstmals 1948 von Theodor F{\"o}rster beschrieben wurde. Mit der Entwicklung von Fluoreszenzproteinen konnten in Kombination mit Mikroskopietechniken Einblicke in zellbiologische Vorg{\"a}nge gewonnen werden, die durch biochemische oder physiologische Experimente nicht m{\"o}glich sind. Dabei spielt die hohe zeitliche und r{\"a}umliche Aufl{\"o}sung eine wichtige Rolle. Auf dem Forschungsgebiet der GPCR, welche die gr{\"o}ßte Gruppe von Membranproteinen bei den S{\"a}ugetieren darstellen, wurden insbesondere Erkenntnisse {\"u}ber Konformations{\"a}nderungen der Rezeptoren, die Kinetik der Rezeptoraktivierung und die Interaktion mit intrazellul{\"a}ren Signalproteinen gewonnen. Der µ-Opioidrezeptor geh{\"o}rt zur Familie der GPCR und stellt aufgrund seiner analgetischen Wirkungen eine wichtige pharmakologische Zielstruktur dar. Das Ziel dieser Arbeit war sowohl den Rezeptor als auch seine Signalwege mittels FRET-Mikroskopie zu untersuchen. Zun{\"a}chst sollte ein intramolekularer FRET-Sensor des µ-Opioidrezeptors entwickelt werden, dazu wurden basierend auf den Kenntnissen {\"u}ber die Terti{\"a}rstruktur und dem Aufbau bereits bekannter GPCR-Sensoren verschiedene Rezeptorkonstrukte kloniert. Bei den Konstrukten wurden entweder zwei Fluoreszenzproteine oder ein Fluoreszenzprotein und ein Fluorophor-bindendes Tetracysteinmotiv kombiniert. Auch die Positionen der eingef{\"u}gten Sequenzen wurden in den intrazellul{\"a}ren Dom{\"a}nen variiert, da der Rezeptor auf die Modifikationen mit beeintr{\"a}chtigter Membranlokalisation reagierte. Durch die Optimierung wurden Rezeptoren konstruiert, die an der Zellmembran lokalisiert waren. Jedoch zeigte keines der Rezeptorkonstrukte Funktionalit{\"a}t im Hinblick auf die Rezeptoraktivierung. Im zweiten Teil wurden die pharmakologischen Effekte der Metabolite von Morphin am humanen µ-Opioidrezeptor systematisch analysiert. Dazu wurde die F{\"a}higkeit der Metabolite, Gi-Proteine zu aktivieren und β-Arrestin2 zu rekrutieren, mittels FRET-basierter Messungen an lebenden Zellen untersucht. Außerdem wurde die Affinit{\"a}t der Metabolite zum humanen µ Opioidrezeptor anhand der Verdr{\"a}ngung eines radioaktiven Liganden analysiert. Meine Experimente identifizierten eine Gruppe mit stark agonistischen und eine mit schwach agonistischen Eigenschaften. Die starken Partialagonisten aktivieren den Rezeptor bereits bei nanomolaren Konzentrationen, w{\"a}hrend die schwachen Metabolite den Rezeptor erst bei Konzentrationen im mikromolaren Bereich aktivieren. Die Metabolite Normorphin, Morphin-6-Glucuronid und 6-Acetylmorphin zeigen geringere Potenz als Morphin bei der Gi-Aktivierung aber {\"u}berraschenderweise h{\"o}here Potenz und Effizienz f{\"u}r die β-Arrestin-Rekrutierung. Dies deutet auf eine bevorzugte Aktivierung von β-Arrestin2 hin. Die aus diesen Studien gewonnenen Ergebnisse liefern Hinweise darauf, welche Metabolite bei der Signalverarbeitung am µ Opioidrezeptor in vivo beteiligt sind.}, subject = {Opiatrezeptor}, language = {de} } @phdthesis{Foertsch2012, author = {F{\"o}rtsch, Christina}, title = {Pneumolysin: the state of pore-formation in context to cell trafficking and inflammatory responses of astrocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70892}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Pneumolysin, a protein toxin, represents one of the major virulence factors of Streptococcus pneumoniae. This pathogen causes bacterial meningitis with especially high disease rates in young children, elderly people and immunosuppressed patients. The protein toxin belongs to the family of cholesterol-dependent cytolysins, which require membrane cholesterol in order to bind and to be activated. Upon activation, monomers assemble in a circle and undergo conformational change. This conformational change leads to the formation of a pore, which eventually leads to cell lysis. This knowledge was obtained by studies that used a higher concentration compared to the concentration of pneumolysin found in the cerebrospinal fluid of meningitis patients. Thus, a much lower concentration of pneumolysin was used in this work in order to investigate effects of this toxin on primary mouse astrocytes. Previously, a small GTPase activation, possibly leading to cytoskeletal changes, was found in a human neuroblastoma cell line. This led to the hypothesis that pneumolysin can lead to similar cytoskeletal changes in primary cells. The aim of this work was to investigate and characterise the effects of pneumolysin on primary mouse astrocytes in terms of a possible pore formation, cellular trafficking and immunological responses. Firstly, the importance of pore-formation on cytoskeletal changes was to be investigated. In order to tackle this question, wild-type pneumolysin and two mutant variants were used. One variant was generated by exchanging one amino acid in the cholesterol recognising region, the second variant was generated by deleting two amino acids in a protein domain that is essential for oligomerisation. These variants should be incapable of forming a pore and were compared to the wild-type in terms of lytic capacities, membrane binding, membrane depolarisation, pore-formation in artificial membranes (planar lipid bilayer) and effects on the cytoskeleton. These investigations resulted in the finding that the pore-formation is required for inducing cell lysis, membrane depolarisation and cytoskeletal changes in astrocytes. The variants were not able to form a pore in planar lipid bilayer and did not cause cell lysis and membrane depolarisation. However, they bound to the cell membrane to the same extent as the wild-type toxin. Thus, the pore-formation, but not the membrane binding was the cause for these changes. Secondly, the effect of pneumolysin on cellular trafficking was investigated. Here, the variants showed no effect, but the wild-type led to an increase in overall endocytotic events and was itself internalised into the cell. In order to characterise a possible mechanism for internalisation, a GFP-tagged version of pneumolysin was used. Several fluorescence-labelled markers for different endocytotic pathways were used in a co-staining approach with pneumolysin. Furthermore, inhibitors for two key-players in classical endocytotic pathways, dynamin and myosin II, were used in order to investigate classical endocytotic pathways and their possible involvement in toxin internalisation. The second finding of this work is that pneumolysin is taken up into the cell via dynamin- and caveolin-independent pinocytosis, which could transfer the toxin to caveosomes. From there, the fate of the toxin remains unknown. Additionally, pneumolysin leads to an overall increase in endocytotic events. This observation led to the third aim of this work. If the toxin increases the overall rate of endocytosis, the question arises whether toxin internalisation favours bacterial tissue penetration of the host or whether it serves as a defence mechanism of the cell in order to degrade the protein. Thus, several proinflammatory cytokines were investigated, as previous studies describe an effect of pneumolysin on cytokine production. Surprisingly, only interleukin 6-production was increased after toxin-treatment and no effect of endocytotic inhibitors on the interleukin 6-production was observed. The conclusion from this finding is that pneumolysin leads to an increase of interleukin 6, which would not depend on the endocytotic uptake of pneumolysin. The production of interleukin 6 would enhance the production of acute phase proteins, T-cell activation, growth and differentiation. On the one hand, this activation could serve pathogen clearance from infected tissue. On the other hand, the production of interleukin 6 could promote a further penetration of pathogen into host tissue. This question should be further investigated.}, subject = {Streptococcus pneumoniae}, language = {en} } @phdthesis{Hupp2012, author = {Hupp, Sabrina}, title = {Modulation of Actin Dynamics by the Cholesterol-Dependent Cytolysin Pneumolysin - a novel mechanism beyond pore formation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70889}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Streptococcus pneumoniae is one of the major causes of bacterial meningitis, which mainly affects young infants in the developing countries of Africa, Asia (esp. India) and South America, and which has case fatality rates up to 50\% in those regions. Bacterial meningitis comprises an infection of the meninges and the sub-meningeal cortex tissue of the brain, whereat the presence of pneumolysin (PLY), a major virulence factor of the pneumococcus, is prerequisite for the development of a severe outcome of the infection and associated tissue damage (e. g. apoptosis, brain edema, and ischemia). Pneumolysin belongs to the family of pore forming, cholesterol-dependent cytolysins (CDCs), bacterial protein toxins, which basically use membrane-cholesterol as receptor and oligomerize to big aggregates, which induce cell lysis and cell death by disturbance of membrane integrity. Multiple recent studies, including this work, have revealed a new picture of pneumolysin, whose cell-related properties go far beyond membrane binding, pore formation and the induction of cell death and inflammatory responses. For a long time, it has been known that bacteria harm the tissues of their hosts in order to promote their own survival and proliferation. Many bacterial toxins aim to rather hijack cells than to kill them, by interacting with cellular components, such as the cytoskeleton or other endogenous proteins. This study was able to uncover a novel capacity of pneumolysin to interact with components of the actin machinery and to promote rapid, actin-dependent cell shape changes in primary astrocytes. The toxin was applied in disease-relevant concentrations, which were verified to be sub-lytic. These amounts of toxin induced a rapid actin cortex collapse in horizontal direction towards the cell core, whereat membrane integrity was preserved, indicating an actin severing function of pneumolysin, and being consistent with cell shrinkage, displacement, and blebbing observed in live cell imaging experiments. In contrast to neuroblastoma cells, in which pneumolysin led to cytoskeleton remodeling and simultaneously to activation of Rac1 and RhoA, in primary astrocytes the cell shape changes were seen to be primarily independent of small GTPases. The level of activated Rac1 and RhoA did not increase at the early time points after toxin application, when the initial shape changes have been observed, but at later time points when the actin-dependent displacement of cells was slower and less severe, probably presenting the cell's attempt to re-establish proper cytoskeleton function. A GUV (giant unilamellar vesicle) approach provided insight into the effects of pneumolysin in a biomimetic system, an environment, which is strictly biochemical, but still comprises cellular components, limited to the factors of interest (actin, Arp2/3, ATP, and Mg2+ on one side, and PLY on the other side). This approach was able to show that the wildtype-toxin, but not the Δ6 mutant (mutated in the unfolding domain, and thus non-porous), had the capacity to exhibit its functions through a membrane bilayer, meaning it was able to aggregate actin, which was located on the other side of the membrane, either via direct interaction with actin or in an Arp2/3 activating manner. Taking a closer look at these two factors with the help of several different imaging and biochemical approaches, this work unveiled the capacity of pneumolysin to bind and interact both with actin and Arp2 of the Arp2/3 complex. Pneumolysin was capable to slightly stabilize actin in an actin-pyrene polymerization assay. The same experimental setup was applied to show that the toxin had the capacity to lead to actin polymerization through activation of the Arp2/3 complex. This effect was additionally confirmed with the help of fluorescent microscopy of rhodamine (TRITC)-tagged actin. Strongest Arp2/3 activation, and actin nucleation/polymerization is achieved by the VCA domain of the WASP family proteins. However, addition of PLY to the Arp2/3-VCA system led to an enhanced actin nucleation, suggesting a synergistic activation function of pneumolysin. Hence, two different effects of pneumolysin on the actin cytoskeleton were observed. On the one hand an actin severing property, and on the other hand an actin stabilization property, both of which do not necessarily exclude each other. Actin remodeling is a common feature of bacterial virulence strategies. This is the first time, however, that these properties were assigned to a toxin of the CDC family. Cytoskeletal dysfunction in astrocytes leads to dysfunction and unregulated movement of these cells, which, in context of bacterial meningitis, can favor bacterial penetration and spreading in the brain tissue, and thus comprises an additional role of pneumolysin as a virulence factor of Streptococcus pneumonia in the context of brain infection.}, subject = {Hirnhautentz{\"u}ndung}, language = {en} } @phdthesis{Dang2012, author = {Dang, Nghia Duc}, title = {Konzeption und Evaluation eines hybriden, skalierbaren Werkzeugs zur mechatronischen Systemdiagnose am Beispiel eines Diagnosesystems f{\"u}r freie Kfz-Werkst{\"a}tten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70774}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Entwicklung eines wissensbasierten Systems, speziell eines Diagnosesystems, ist eine Teildisziplin der k{\"u}nstlichen Intelligenz und angewandten Informatik. Im Laufe der Forschung auf diesem Gebiet wurden verschiedene L{\"o}sungsans{\"a}tze mit unterschiedlichem Erfolg bei der Anwendung in der Kraftfahrzeugdiagnose entwickelt. Diagnosesysteme in Vertragswerkst{\"a}tten, das heißt in Fahrzeughersteller gebundenen Werkst{\"a}tten, wenden haupts{\"a}chlich die fallbasierte Diagnostik an. Zum einen h{\"a}lt sich hier die Fahrzeugvielfalt in Grenzen und zum anderen besteht eine Meldepflicht bei neuen, nicht im System vorhandenen F{\"a}llen. Die freien Werkst{\"a}tten verf{\"u}gen nicht {\"u}ber eine solche Datenbank. Somit ist der fallbasierte Ansatz schwer umsetzbar. In freien Werkst{\"a}tten - Fahrzeughersteller unabh{\"a}ngigen Werkst{\"a}tten - basiert die Fehlersuche haupts{\"a}chlich auf Fehlerb{\"a}umen. Wegen der wachsenden Fahrzeugkomplexit{\"a}t, welche wesentlich durch die stark zunehmende Anzahl der durch mechatronische Systeme realisierten Funktionen bedingt ist, und der steigenden Typenvielfalt ist die gef{\"u}hrte Fehlersuche in freien Werkst{\"a}tten nicht immer zielf{\"u}hrend. Um die Unterst{\"u}tzung des Personals von freien Werkst{\"a}tten bei der zuk{\"u}nftigen Fehlersuche zu gew{\"a}hrleisten, werden neue Generationen von herstellerunabh{\"a}ngigen Diagnosetools ben{\"o}tigt, die die Probleme der Variantenvielfalt und Komplexit{\"a}t l{\"o}sen. In der vorliegenden Arbeit wird ein L{\"o}sungsansatz vorgestellt, der einen qualitativen, modellbasierten Diagnoseansatz mit einem auf heuristischem Diagnosewissen basierenden Ansatz vereint. Neben der Grundlage zur Wissenserhebung werden in dieser Arbeit die theoretische Grundlage zur Beherrschung der Variantenvielfalt sowie die Tests f{\"u}r die erstellten Diagnosemodelle behandelt. Die Diagnose ist symptombasiert und die Inferenzmechanismen zur Verarbeitung des Diagnosewissens sind eine Kombination aus Propagierung der abweichenden physikalischen Gr{\"o}ßen im Modell und der Auswertung des heuristischen Wissens. Des Weiteren werden in dieser Arbeit verschiedene Aspekte der Realisierung der entwickelten theoretischen Grundlagen dargestellt, zum Beispiel: Systemarchitektur, Wissenserhebungsprozess, Ablauf des Diagnosevorgangs in den Werkst{\"a}tten. Die Evaluierung der entwickelten L{\"o}sung bei der Wissenserhebung in Form von Modellerstellungen und Modellierungsworkshops sowie Feldtests dient nicht nur zur Best{\"a}tigung des entwickelten Ansatzes, sondern auch zur Ideenfindung f{\"u}r die Integration der entwickelten Tools in die existierende IT-Infrastruktur.}, subject = {Diagnosesystem}, language = {de} } @phdthesis{Dill2012, author = {Dill, Holger}, title = {Functional characterization of the microRNA-26 family in zebrafish neurogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Formation oft the central nervous system (CNS) from multipotent neuronal stem cells (NSCs) requires a tightly controlled, step-wise activation of the neuronal gene expression program. Expression of neuronal genes at the transition from neural stem cell to mature neuron (i. e. neuronal cell differentiation) is controlled by the Repressor element 1 (RE1) silencing transcription factor (REST) complex. As a master transcriptional regulator, the REST-complex specifically inhibits expression of neuronal genes in non-neuronal tissues and neuronal progenitor cells. Differentiation of NSCs to mature neurons requires the activation of genes controlled by the REST-complex, but how abrogation of REST-complex mediated repression is achieved during neurogenesis is only poorly understood. MicroRNAs (miRNAs) are a class of small regulatory RNAs that posttranscriptionally control target gene expression. Binding of miRNAs to target sequences in the 3'UTR of mRNAs, leads either to degradation or translational inhibition of the mRNA. Distinct neuronal miRNAs (e.g. miR-124) were shown to modulate REST-complex activity by silencing expression of REST-complex components. Interestingly, these miRNAs are also under transcriptional control of the REST-complex and inactivation of the REST-complex precedes their expression. Hence, additional factors are required for derepression of neuronal genes at the onset of neurogenesis. In this study function of the miR-26 family during neurogenesis of the zebrafish (Danio rerio) was analyzed. Computational target prediction revealed a number of REST-complex components as putative miR-26 targets. One of these predicted target genes, the C-terminal domain small phosphatase 2 (Ctdsp2) was validated as an in vivo target for miR-26b. Ctdsps are important cofactors of REST and suppress neuronal gene expression by dephosphorylating the C-terminal domain (CTD) of RNA polymerase II (Pol II). Interestingly, miR-26b is encoded in an intron of the ctdsp2 primary transcript and is cotranscribed together with its host gene. Hence, miR-26b modulates expression of its host gene ctdsp2 in an intrinsic negative autoregulatory loop. This negative autoregulatory loop is inactive in NSCs because miR-26b biogenesis is inhibited at the precursor level. Generation of mature miR-26b is activated during neurogenesis, where it suppresses Ctdsp2 protein expression and is required for neuronal cell differentiation in vivo. Strikingly, miR-26b is expressed prior to miR-124 during neuronal cell differentiation. Thus, it is reasonable to speculate about a function of miR-26b in early events of neurogenesis. In line with this assumption, knockdown of miR-26b in zebrafish embryos results in downregulation of REST-complex controlled neuronal genes and a block in neuronal cell differentiation, most likely due to aberrant regulation of Ctdsp2 expression. This is evident by reduced numbers of secondary motor neurons compared to control siblings. In contrast, motor neuron progenitor cells and glia cells were not affected by depletion of miR-26b.This study identifies the ctdsp2/miR-26b autoregulatory loop as the first experimentally validated interaction between an intronic miRNA and its host gene transcript. Silencing of ctdsp2 by miR-26b in neurons is possible because biogenesis of the ctdsp2 mRNA and mature mir-26b is uncoupled at the posttranscriptional level. Furthermore the obtained data indicate a cell type specific role for miR-26b in vertebrate neurogenesis and CNS development.}, subject = {Zebrab{\"a}rbling}, language = {en} }